Long Read Sequencing Technology

- Algorithms and its applications -

Hayan Lee@Schatz Lab
May 18, 2015
Graduate Student Symposium

Outline

Background

Long read sequencing technology

The Resurgence of reference quality genome (3Cs)

- The next version of Lander-Waterman Statistics (Contiguity)
- Historical human genome quality by gene block analysis (Completeness)
- The effectiveness of long reads in de novo assembly (Correctness)

Sugarcane de novo genome assembly challenge

- The effectiveness of accurate long reads in de novo assembly especially for highly heterozygous aneuploidy genome
- Pure long read de novo assembly, combine with Moleculo and PacBio reads.

Contributions

Background

BAC-by-BAC + Sanger Era (~ 2007)

- Very high quality reference genomes for human, mouse, worm, fly, rice,
 Arabidopsis and a select few other high value species.
- Contig sizes in the megabases, but costs in the 10s to 100s of millions of dollars

Next-Gen Era (2007 to current)

- Costs dropped, but genome quality suffered
- Genome finishing almost completely abandoned; "exon-sized" contigs
- These low quality draft sequences are (1) missing important sequences, (2) lack context to discover regulatory elements or evolutionary patterns, and (3) contain many errors

Third-Gen Era (current)

- New biotechnologies (single molecule, chromatin assays, etc) and new algorithms (MHAP, LACHESIS, etc) are leading to a Resurgence of Reference Quality Genomes
- De novo assemblies of human and other large genomes with contig sizes over 1Mbp.

Third-Gen Sequencing Technology

Long Read Sequencing: De novo assembly, SV analysis, phasing

Illumina/Moleculo

3-5kbp (Kuleshov et al. 2014)

Pacific Biosciences

10-15kbp (Berlin et al, 2014)

Oxford Nanopore

5-10kbp (Quick et al, 2014)

Long Span Sequencing: Chromosome Scaffolding, SV analysis, phasing

Molecular Barcoding

30-60kbp (10Xgenomics.com)

Optical Mapping

100-150kbp (Cao et al, 2014)

Chromatin Assays

25-100kbp (Putnam et al, 2015)

Outline

Background

Long read sequencing technology and algorithms

The Resurgence of reference quality genome (3Cs)

- The next version of Lander-Waterman Statistics (Contiguity)
- Historical human genome quality by gene block analysis (Completeness)
- The effectiveness of long reads in de novo assembly (Correctness)

Sugarcane de novo genome assembly challenge

- The effectiveness of accurate long reads in de novo assembly especially for highly heterozygous aneuploidy genome
- Pure long read de novo assembly, combine with accurate long reads and erroneous long reads

Contributions

De novo genome assembly

I. Shear & Sequence DNA

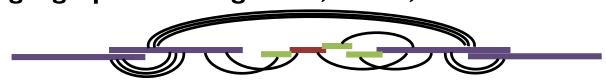
2. Construct assembly graph from overlapping reads

...AGCCTAGGGATGCGCGACACGT

CAACCTCGGACGGACCTCAGCGAA...

3. Simplify assembly graph

4. Detangle graph with long reads, mates, and other links



Many Genomes Are Sequenced... Many Questions Are Raised... But...

- How long should the read length be?
- What coverage should be used?

Given the read length and coverage,

- How long are contigs? <- Contiguity prediction
- How many contigs?
- How many reads are in each contigs?
- How big are the gaps?

Lander-Waterman Statistics

GENOMICS 2, 231-239 (1988)

Genomic Mapping by Fingerprinting Random Clones: A Mathematical Analysis

ERIC S. LANDER*, AND MICHAEL S. WATERMAN

*Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142; †Harvard University, Cambridge, Massachusetts 02138; and ‡Departments of Mathematics and Molecular Biology, University of Southern California, Los Angeles, California 90089

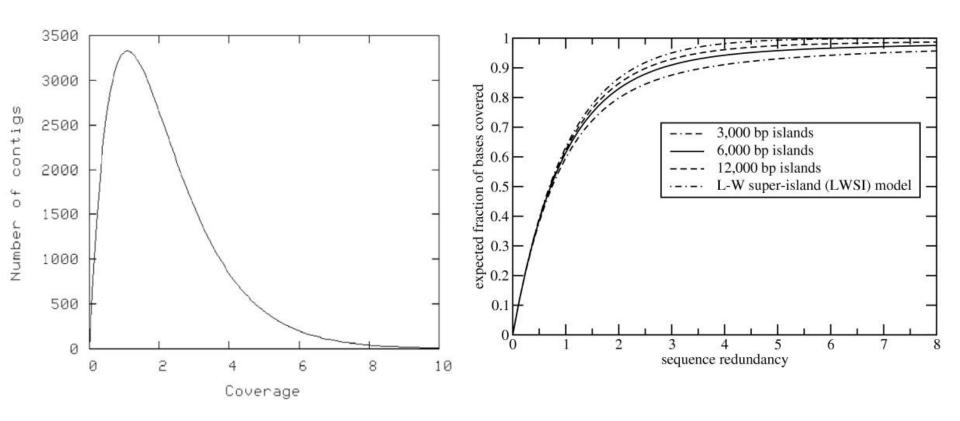
Received January 13, 1988; revised March 31, 1988

Results from physical mapping projects have recently been reported for the genomes of Escherichia coli, Saccharomyces cerevisiae, and Caenorhabditis elegans, and similar projects are currently being planned for other organisms. In such projects, the physical map is assembled by first "fingerprinting" a large number of clones chosen at random from a recombinant library and then inferring overlaps between clones with sufficiently similar fingerprints.

available region of up to several megabases and of studying its properties. In addition, the overlapping clones comprising the physical map would constitute the logical substrate for efforts to sequence an organism's genome.

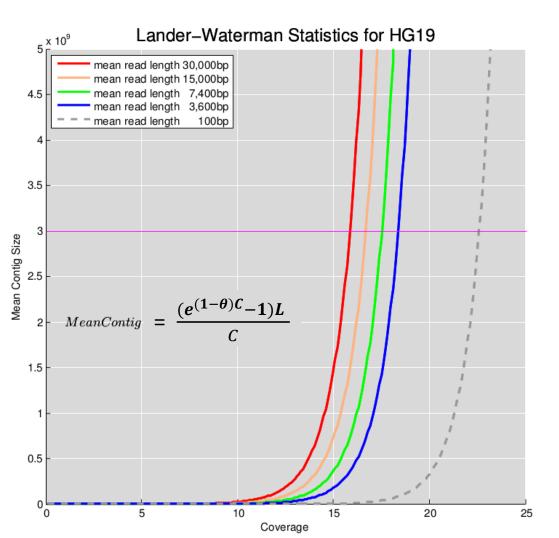
Recently, three pioneering efforts have investigated the feasibility of assembling physical maps by means of "fingerprinting" randomly chosen clones. The fingerprints consisted of information about restriction

Lander-Waterman Statistics



In practice, it's useful only in low coverage (3-5x) but becomes nonsensical in high coverage.

HG19 Genome Assembly Performance by Lander-Waterman Statistics



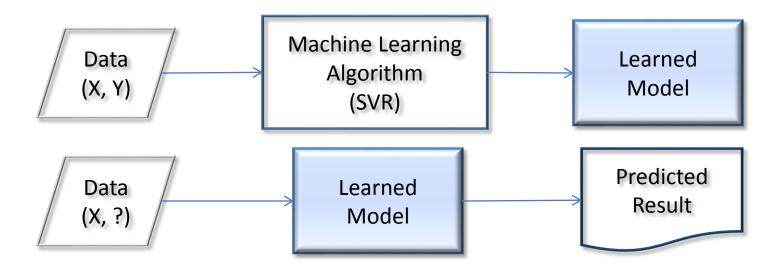
Two key observations

- 1. Contig over genome size
- 2. Read Length vs. Coverage

Technology vs. Money

Empirical Data-driven Approach

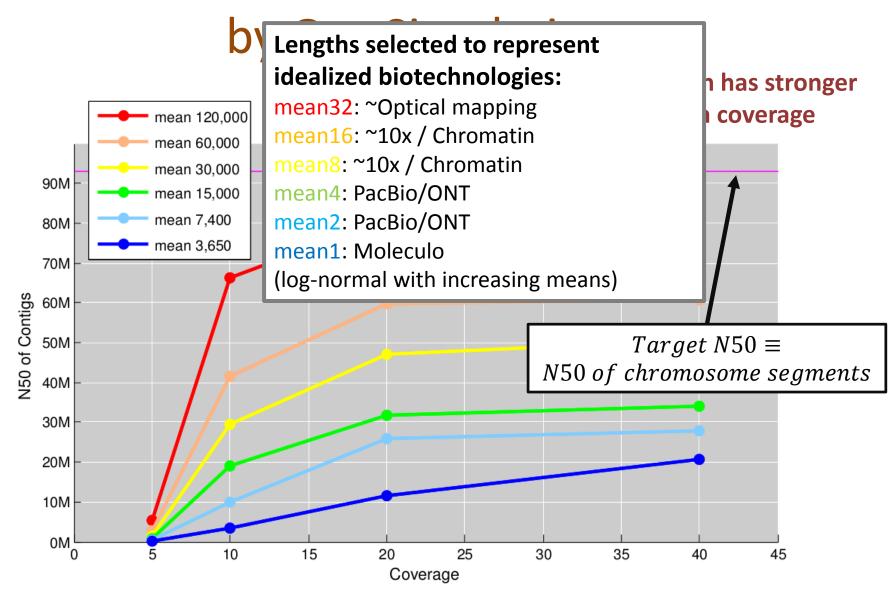
- We selected 26 species across tree of life and exhaustively analyzed their assemblies using simulated reads for 4 different length (6 for HG19) and 4 different coverage per species
- For the extra long reads, we fixed the Celera Assembler(CA) to support reads up to 0.5Mbp



26 Species Across Tree of Life

	Model	ID	Genome Size	
	Organism			
	M.jannaschii	1	1,664,970	
	C.hydrogenoformans	2	2,401,520	
	E.coli	3	4,639,675	
	Y.pestis	4	4,653,728	
	B.anthracis	5	5,227,293	
	A.minum	6	8,248,144	
	yeast	7	12,157,105	
	Y.lipolytica	8	20,502,981	
	slime mold	9	34,338,145	
	Red bread mold	10	41,037,538	
	sea squirt	11	78,296,155	
	roundworm	12	100,272,276	
	green alga	13	112,305,447	
	arahidonsis	14	119,667,750	
	fruitfly	15	130,450,100	
	peach	16	227,252,106	
	rice	17	370,792,118	
	poplar	18	417,640,243	
	tomato	19	781,666,411	
	soybean	20	973,344,380	
	turkey	21	1,061,998,909	
	zebra fish	22	1,412,464,843	
	lizard	23	1,799,126,364	
	com	24	2,066,432,718	
	mouse	25	2,654,895,218	
0	human	26	3,095,693,983	

HG19 Genome Assembly Performance



Why?

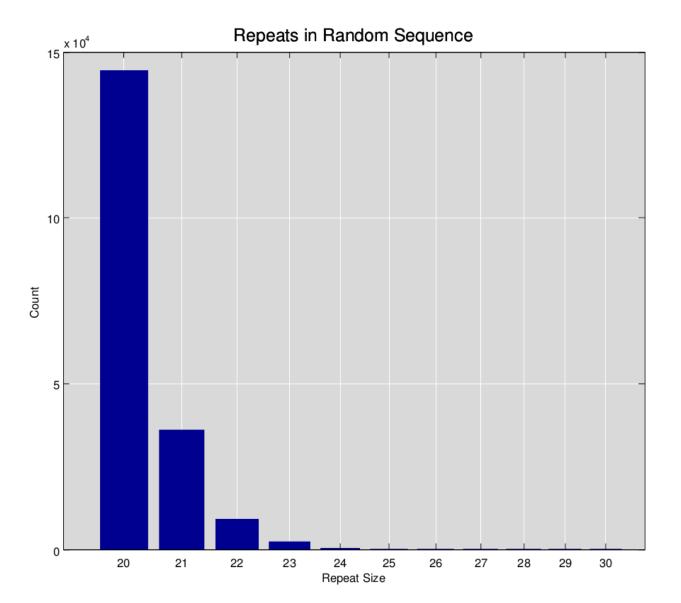
Lander-Waterman Statistics

- Assumptions!!!
- If genome is a random sequence, it will work
- It works only in low coverage 3-5x
- It works for small genomes (< yeast)

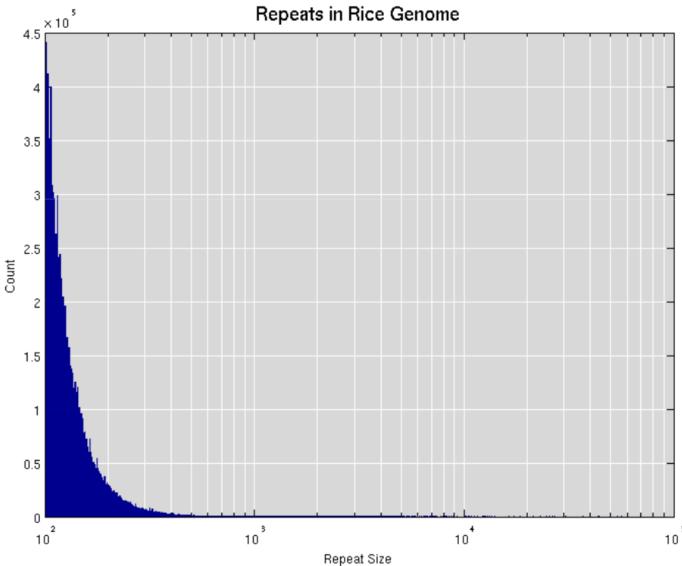
Our Approach

- Stop assuming that we cannot guarantee!!!
- We tried to assume as least as possible.
- Instead of building on top of assumptions, we let the model learn from the data
- Empirical data-driven approach

Repeats



Repeats in Rice



Our Goal

To predict genome assembly contiguity

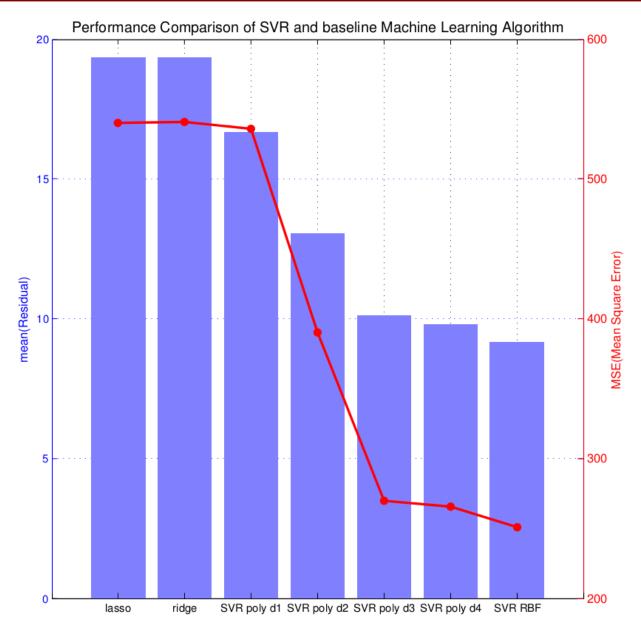
$$Performance(\%) \equiv \frac{N50 \, from \, assembly}{N50 \, of \, chromosome \, segments} \times 100$$

$$\approx \int \begin{pmatrix} Read \, Length \\ Coverage \\ Repeats \\ Genome \, Size \end{pmatrix}$$

Challenges for Prediction

- Sample size is small
- Quality is not guaranteed
- Predictive Power
- Overfitting

Support Vector Regression (SVR)
Cross Validation



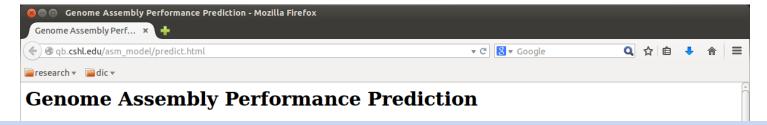
The resurgence of reference genome qaultiy

Lee, H, Gurtowski, J, Yoo, S, Marcus, S, McCombie, WR, Schatz MC et al. (2015) In preparation

Predictive Power

- Average of residual is 15%
- We can predict the new genome assembly performance in 15% of error residual boundary
- Genome size, read length and coverage used explicitly
- Repeats are included implicitly

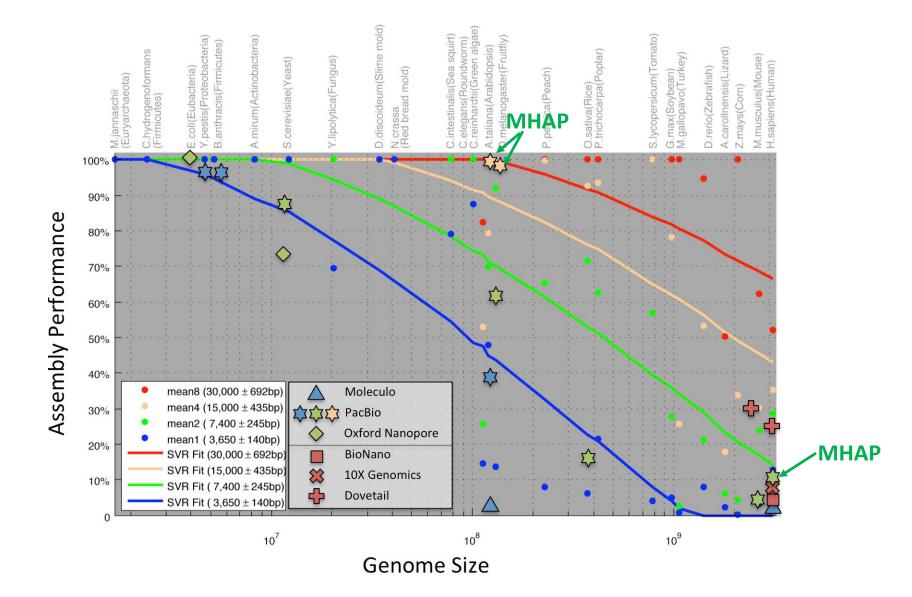
Web Service for Contiguity Prediction



Http://qb.cshl.edu/asm_model/predict.html

Given genome size, we internally set read lengths and coverages for you. With 3 features, our model predicts the expected performance of assembly. Performance is defined as follows: Performance(%) = N50 of assembly / N50 of chromosome segments Genome size: 1000123456 Submit Assembly Prediction of Genome Size 1000123456 By Coverage 80 20 mean 30,000 nean 15,000 mean 3,700 15 Coverage

Reference Genome Quality



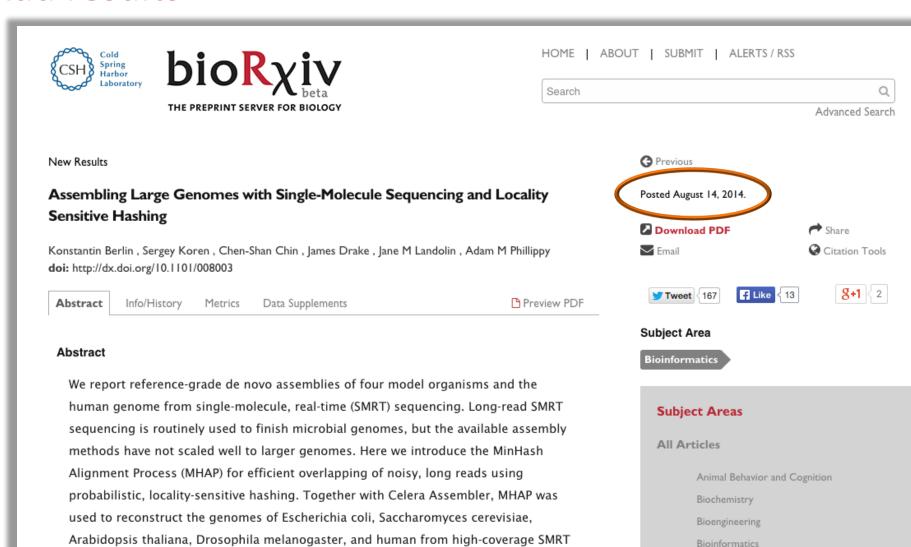
Preprint



Biophysics

Validated by MHAP

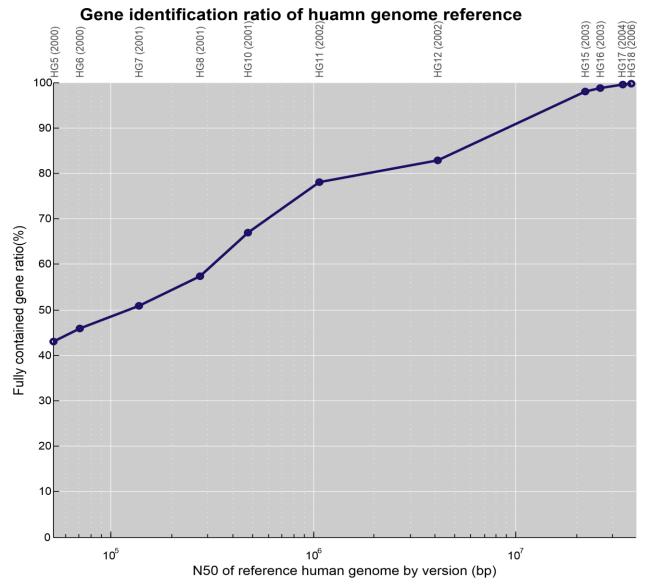
Add results



sequencing. The resulting assemblies include fully resolved chromosome arms and

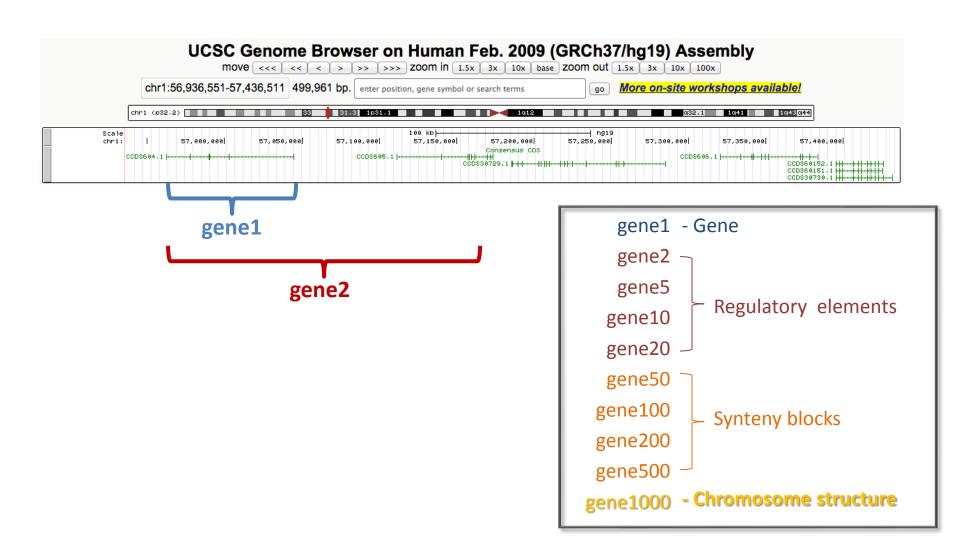
Completeness

Human Reference Genome Quality by gene block analysis



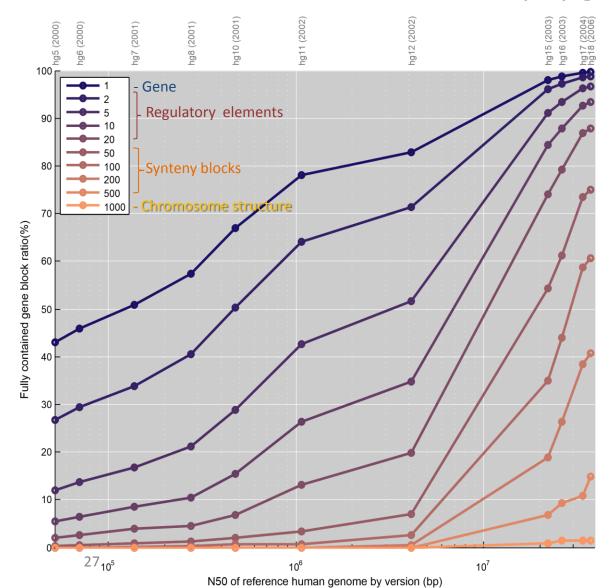
Completeness

Human Reference Genome Quality by gene block analysis



Completeness

Human Reference Genome Quality by gene block analysis



Larger contigs and scaffolds empowers analysis at every possible level.

- SNPs (~10k clinically relevant)
- Genes
- Regulatory elements
- Synteny blocks
- Chromosome structure

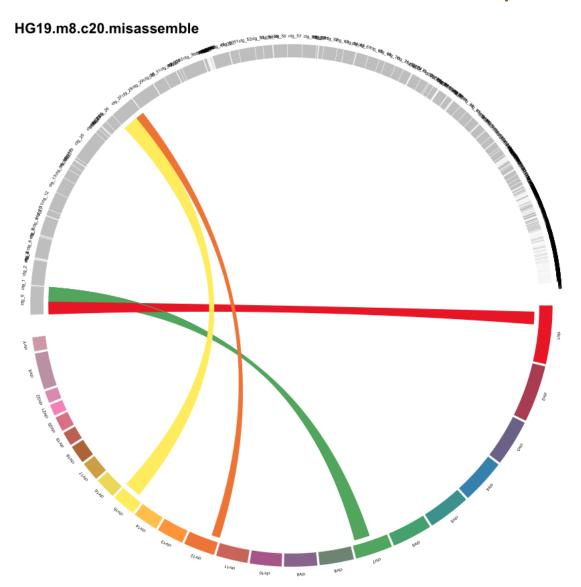
Correctness Summary in HG19

N50 misleading

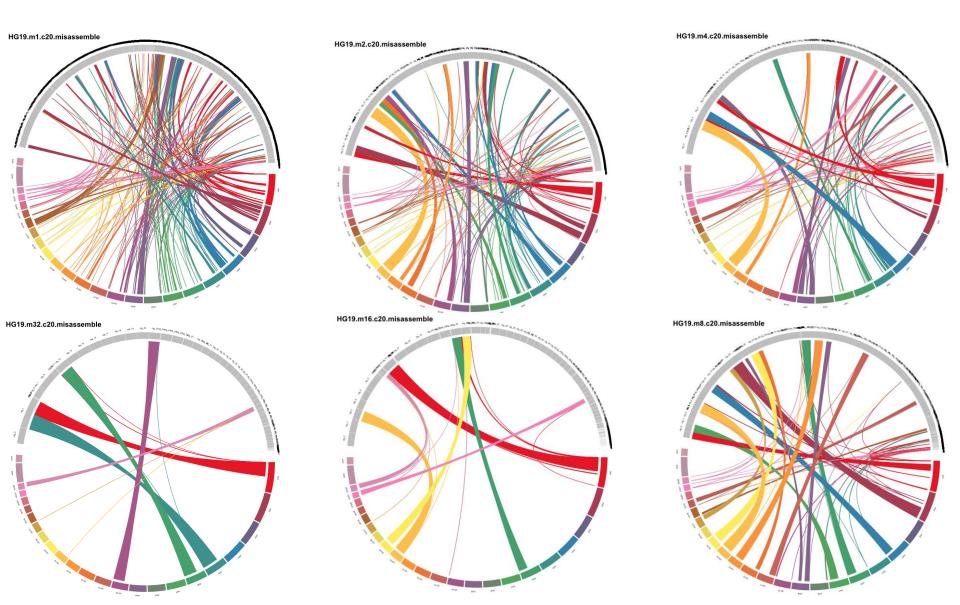
HG19	(major) misassembly	(major) breaks
	False Positive	False Negative
	Increase N50 (falsely lengthen contiguity)	Decrease N50 (shorten contiguity)
	Mislead us in biological meaning	Negatively impact on downstream research
Mean1	209	4069
Mean2	70	462
Mean4	49	296
Mean8	33	197
Mean16	9	42
Mean32	7	5

Misassembly

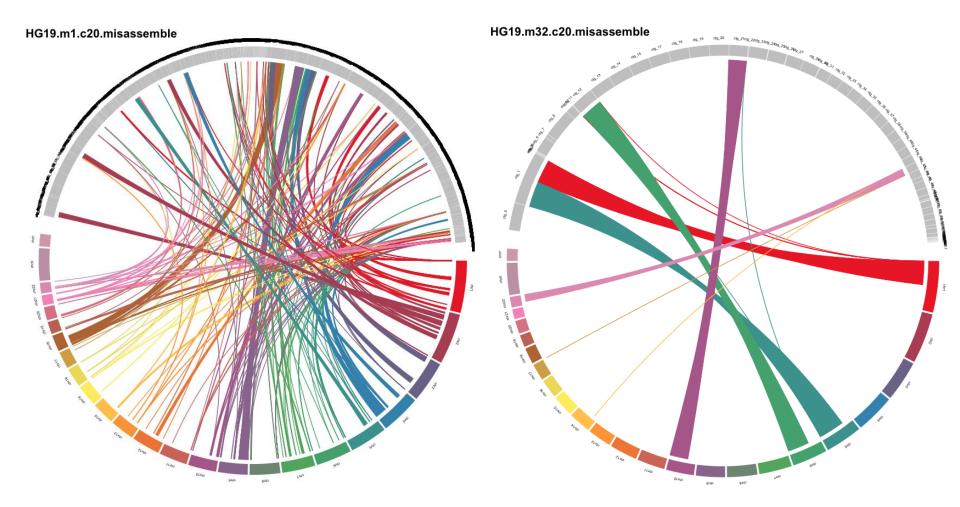
A critical error in de novo assembly



Misassembly Analysis in HG19



Misassembly Analysis in HG19



Long read sequencing technology helps to reduce both misassembly and breaks thus increase correctness of de novo genome assembly

Summary & Recommendations

Reference quality genome assembly is here

- Use the longest possible reads and spans for the best assembly
- Coverage and algorithmics overcome most random errors

Megabase N50 improves the analysis in every dimension

- Better resolution of genes and flanking regulatory regions
- Better resolution of transposons and other complex sequences
- Better resolution of chromosome organization

Need to develop methods to jointly analyze multiple highquality references at once

Outline

The Resurgence of reference genome quality (3Cs)

- The next version of Lander-Waterman Statistics (Contiguity)
- Historical human genome quality by gene block analysis (Completeness)
- The effectiveness of long reads in de novo assembly (Correctness)

Sugarcane de novo genome assembly challenge

- The effectiveness of accurate long reads in de novo assembly especially for highly heterozygous aneuploidy genome
- Pure long read de novo assembly, combine with Moleculo and PacBio reads.

Contributions

Sugarcane for food and biofuel

Food

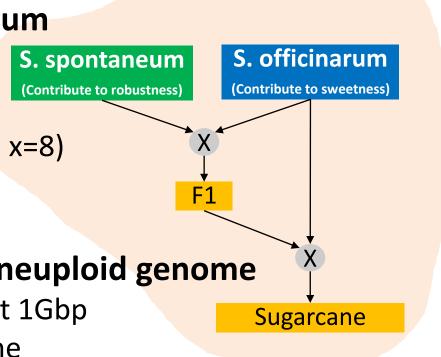
- By 2050, the world's population will grow by 50%, thus another
 2.5 billion people will need to eat!
- Rapidly rising oil prices, adverse weather conditions, speculation in agricultural markets are causing more demand

Biofuel

- By 2050, global energy needs will double as will carbon dioxide emission
- Low-carbon solution
- Sugarcane ethanol is a clean, renewable fuel that produces on average 90 percent less carbon dioxide emission than oil and can be an important tool in the fight against climate change.

A hybrid sugarcane cultivar SP80-3280

- S.spontaneum x S.officinarum
- A century ago....
- Saccharum genus
 - S. spontaneum (2n=40-128, x=8)
 - S. officinarum (2n=8x=80)
- Big, highly polyploid and aneuploid genome
 - Monoploid genome is about 1Gbp
 - 8-12 copies per chromosome
 - In total, 100-130 chromosomes
 - Total size is about 10Gbp



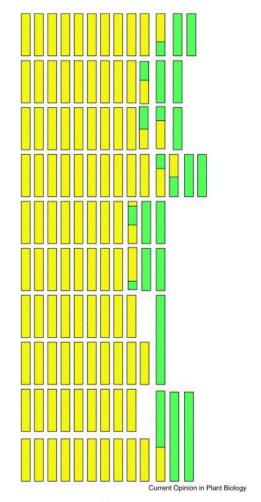
Why is sugarcane assembly harder? (1)

Polyploidy/Aneuploidy

 10% of the chromosomes are inherited in their entirety from S. spontaneum, 80% are inherited entirely from S. officinarum

Large scale recombination

 10% is the result of recombination between chromosomes from the two ancestral species, a few being double recombinants



(source) http://ars.els-cdn.com/content/image/1-s2.0-

Four Important Questions in Sugarcane

Scaffold polyploidy/aneuploidy genome

 How do we connect contigs/cluster contigs per chromosome/fill gaps among contigs?

Phasing haplotypes

Not solved in diploid genome yet

Heterozygosity

- How do we measure heterozygosity in polyploidy/aneuploidy genome?
- How do we quantify alleles and get ratio?

Inference of polyploidy/aneuploidy estimation

— How do we infer the number of copies per chromosome in aneuploidy genome, especially in the large scale of recombination?

Margarido GRA, Heckerman D (2015) ConPADE: Genome Assembly Ploidy Estimation from Next-Generation Sequencing Data. PLoS Comput Biol 11(4): e1004229. doi: 10.1371/journal.pcbi.1004229

Choose the right data and the right method

DATA	Hiseq 2000 PE (2x100bp) - 575Gbp - 600x of haploid genome Roche454 - 9x of haploid genome - [min=20 max=1,168] - Mean=332bp	 Moleculo 19Gbp 19x of haploid genome [min=1,500 max=22,904] Mean = 4,930bp
Algorithm	SOAPdenovo (De Bruijn Graph)	Celera Assembler (Overlap Graph)
RESULT	Max contig = 21,564 bp NG50= 823 bp Coverage= 0.86 x	Max contig = 467,567 bp NG50= 41,394 bp Coverage= 3.59x # of contigs = 450K

CEGMA

CEGs

Korf Lab in UC. Davis selected 248 core eukaryotic genes

Statistics of the completeness

	Prots	%Completeness	Total	Average	%Ortho
Complete	219	88.31	827	3.78	89.04
Partial	242	97.58	1083	4.48	95.45

· Gene prediction aided by sorghum gene model

- In progess...
- 39k sorghum genes were found in sugarcane contigs at least partially

NP-Hard Hairball of Sugarcane

Vertices are contigs

Edges are linking information

Edges are reliable linking information from 120 Gbp 10K jumping library

of vertices: 81,552

of edges: 82,269

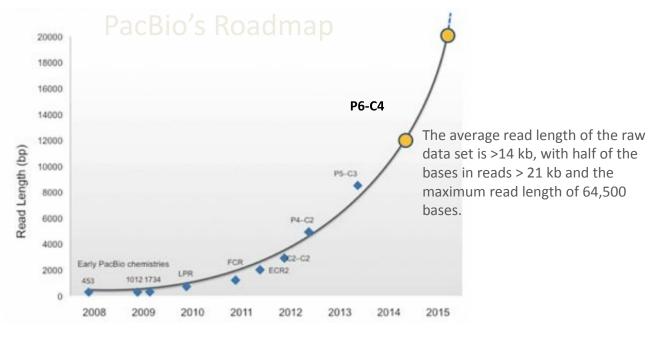
Average degree of a node: 1

of connected components = 17,919

Average number of vertices per CC= 2.54

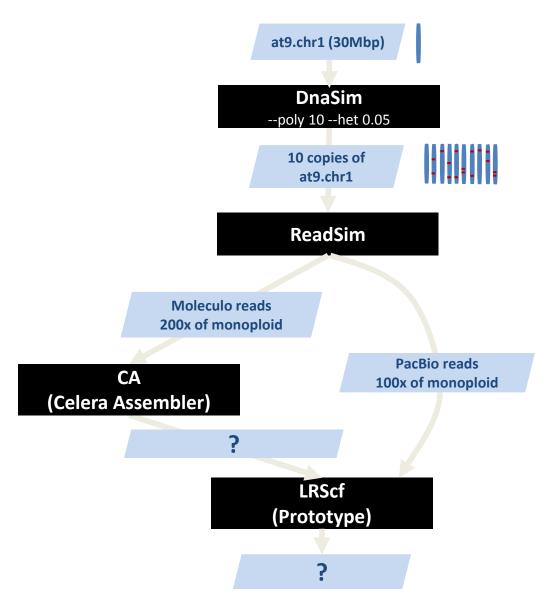
The biggest CC has 25 vertices

Benefits of Long Read Scaffolding



- Read Length is increasing, the cost is decreasing
- Very informative whether it has high error rate or not
- More repeats resolved
- Better scaffolding solution than long jumping library
- We don't have to approximate insert size by MLE or so.
- It's much better to fill gaps with some base information rather than just NNNNNN.

Prototype for scaffolding



- L. Simulate heterozygous polyploidy genome
 - 10 copies with 5% of difference from original chromosome
- 2. Simulate Moleculo reads from polyploidy genome
 - Read length distribution
 follows exactly real molecule
 read distribution
- 3. Simulate PacBio reads from polyploidy genome
 - Simulate P6-C4, the lastest PacBio chemistry
- Run Celera Assembler(CA) to assemble contigs with Moleculo reads
- 5. Run LRScf to scaffold the contigs with PacBio reads

Preliminary Results

- Moleculo-based contigs from CA
 - Around 700 contigs
- Long Read Scaffolding
 - Align PacBio reads to all contigs
 - Find PacBio reads that link between two contigs
 - Around 1600 alignments out of 40K PacBio Reads

Sugarcane Scaffolding Challenges

- How to represent aneuploidy genome?
- How to screen out false positive link information?
 - # Weakly connected components 5
 - # Strongly connected components 61
 - True value 5 < 10 < 61
- How to assemble PacBio reads across gaps?

How to extend contigs with PacBio reads?

Contributions

The Resurgence of reference genome quality (3Cs)

- Provide the data-driven model, a.k.a. the next version of Lander-Waterman Statistics to predict contiguity of de novo genome assembly project
- Analysis of completeness and correctness in historical human genome assembly

Sugarcane de novo genome assembly challenge

- Showed the effectiveness of accurate long reads in de novo assembly especially for highly heterozygous aneuploidy genome
 - NG50 contig length improved 50 times
 - The longest contig extended 25 times to half million bp
- Pure long read de novo assembly for both contigs and scaffolding

Acknowledgements

Schatz Lab

Michael Schatz
Fritz Sedlazeck
James Gurtowski
Sri Ramakrishnan
Han fang
Maria Nattestad
Rob Aboukhalil
Tyler Garvin
Mohammad Amin
Shoshana Marcus

McCombie Lab
Dick McCombie
Sara Goodwin

Shinjae Yoo

Research

Ravi Pandya Bob Davidson David Heckerman

University of São Paulo

Gabriel Rodrigues Alves Margarido Jonas W. Gaiarsa Carolina G. Lembke Marie-Anne Van Sluys Glaucia M. Souza

The State University of New York

Thank You Q & A

