Spectral Clustering

Hayan Lee

Research Fellow @ Simons Institute for the Theory of Computing, UC Berkeley Simons Postdoctral Fellow @ JGI, Lawrence Berkeley National Laboratory

Outline

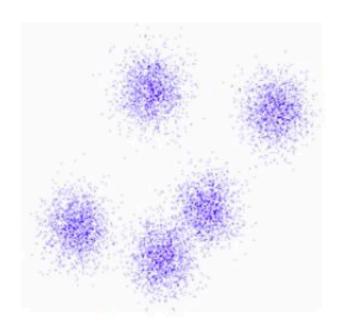
- Background
 - K-means clustering vs. spectral clustering
 - Adjacent matrix, degree matrix, graph Laplcian
 - Graph partitioning problem : min-cut, normalized min-cut
- Spectral Clustering
 - Algorithm
 - How to interpret
 - How to understand intuitively
 - How to apply to metagenome assembly

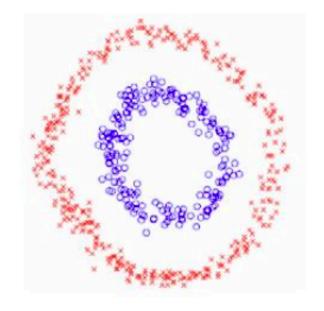
Background

Clustering

K-means	Spectral Clustering
 Requires to assume K in advance Poor clustering performance over non-convex data Rely on randomized approach Greedy Algorithm Only finds local minima Needs multiple start from various initial states EM approach Needs iterative process 	 + No assumptions need to be made • Convex or non-convex + Do not need to run multiple times + No greedy algorithm + Deterministic + No EM approach • No iteration is required • Very good interpretation • Well backed by mathematics e.g. graph Laplacian, SVD etc.

Data Clustering Criteria





By compactness e.g. K-means

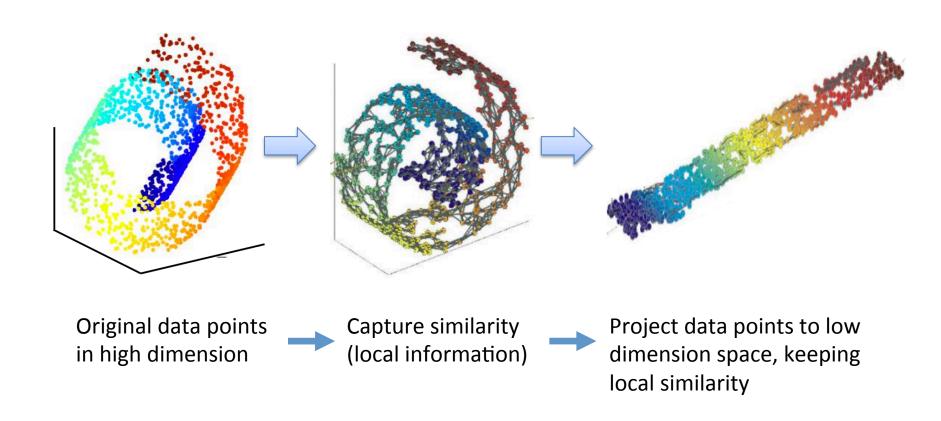
By connectivity (similarity) e.g. Spectral clustering

Data Clustering Criteria

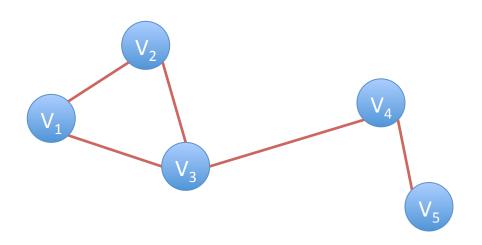
By compactness e.g. K-means

By connectivity (similarity) e.g. Spectral clustering

How does it work?



Adjacent Matrix

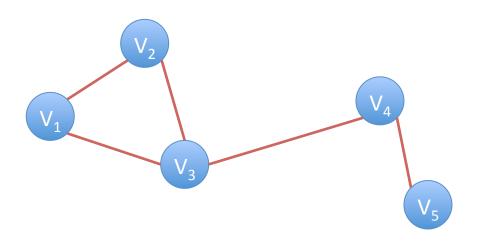


How to capture similarity

- Just make something up if you're a domain expert
- 2. ε–neighbors
- Use kernel e.g. Gaussian kernel similarity function

$$w = \begin{pmatrix} 5 & 4 & 4 & 0 & 0 \\ 4 & 5 & 4 & 0 & 0 \\ 4 & 4 & 5 & 1 & 0 \\ 0 & 0 & 1 & 5 & 4 \\ 0 & 0 & 0 & 4 & 5 \end{pmatrix}$$

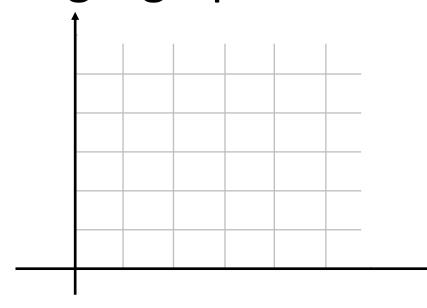
Degree Matrix



$$D = \begin{pmatrix} d_1 & 0 & 0 & 0 & 0 \\ 0 & d_2 & 0 & 0 & 0 \\ 0 & 0 & d_3 & 0 & 0 \\ 0 & 0 & 0 & d_4 & 0 \\ 0 & 0 & 0 & 0 & d_5 \end{pmatrix}$$

Partitioning a graph into two clusters

Х	У
0	0
0	1
1	0
4	2
5	2
5	3



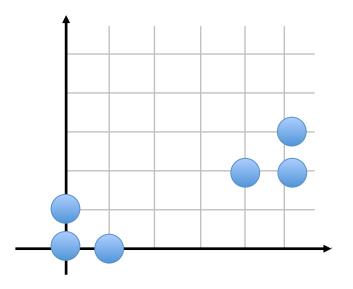
Gaussian kernel

$$w_{ij} = e^{-\frac{\|v_i - v_j\|^2}{2\sigma^2}}$$

$$w = \begin{pmatrix} 1 & 0.6 & 0.6 & 0 & 0 & 0 \\ 0.6 & 1 & 0.37 & 0.0002 & 0 & 0 \\ 0.6 & 0.37 & 1 & 0.0015 & 0 & 0 \\ 0 & 0.0002 & 0.0015 & 1 & 0.6 & 0.37 \\ 0 & 0 & 0 & 0.6 & 1 & 0.6 \\ 0 & 0 & 0 & 0.37 & 0.6 & 1 \end{pmatrix}$$

Partitioning a graph into two clusters

Х	У
0	0
0	1
1	0
4	2
5	2
5	3



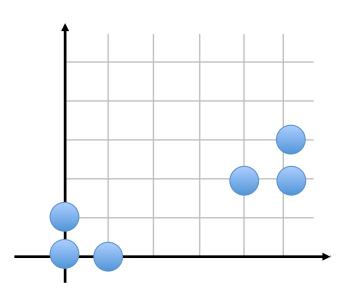
$$R = \sum w_{ij} (f_i - f_j)^2$$

$$w = \begin{pmatrix} 1 & 0.6 & 0.6 & 0 & 0 & 0 \\ 0.6 & 1 & 0.37 & 0.0002 & 0 & 0 \\ 0.6 & 0.37 & 1 & 0.0015 & 0 & 0 \\ 0 & 0.0002 & 0.0015 & 1 & 0.6 & 0.37 \\ 0 & 0 & 0 & 0.6 & 1 & 0.6 \\ 0 & 0 & 0 & 0.37 & 0.6 & 1 \end{pmatrix}$$

$$f = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \qquad f = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

Partitioning a graph into two clusters

X	У
0	0
0	1
1	0
4	2
5	2
5	3



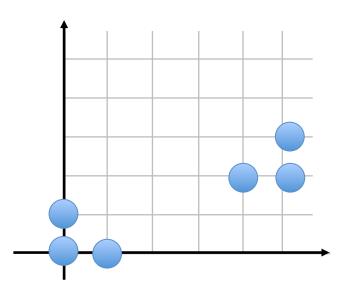
$$R = \sum w_{ij} (f_i - f_j)^2$$

$$w = \begin{pmatrix} 1 & 0.6 & 0.6 & 0 & 0 & 0 \\ 0.6 & 1 & 0.37 & 0.0002 & 0 & 0 \\ 0.6 & 0.37 & 1 & 0.0015 & 0 & 0 \\ 0 & 0.0002 & 0.0015 & 1 & 0.6 & 0.37 \\ 0 & 0 & 0 & 0.6 & 1 & 0.6 \\ 0 & 0 & 0 & 0.37 & 0.6 & 1 \end{pmatrix}$$

$$f = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Min-Cut Problem

X	У
0	0
0	1
1	0
4	2
5	2
5	3



$$w = \begin{pmatrix} 1 & 0.6 & 0.6 & 0 & 0 & 0 \\ 0.6 & 1 & 0.37 & 0.0002 & 0 & 0 \\ 0.6 & 0.37 & 1 & 0.0015 & 0 & 0 \\ 0 & 0.0002 & 0.0015 & 1 & 0.6 & 0.37 \\ 0 & 0 & 0 & 0.6 & 1 & 0.6 \\ 0 & 0 & 0 & 0.37 & 0.6 & 1 \end{pmatrix}$$

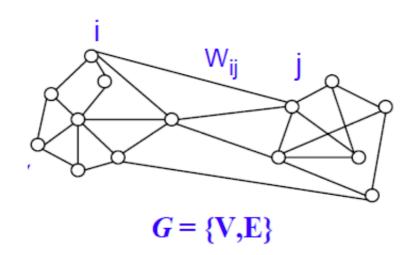
$$R = \sum_{i} w_{ij} (f_i - f_j)^2$$

$$\underset{f}{\operatorname{argmin}} \sum_{i} w_{ij} (f_i - f_j)^2$$

We have a polynomial time solution O(VE)

- 1. Ignore any weights if data points are in the same cluster.
- 2. Sum weights between clusters. If it's small, it means clusters are good.
- 3. This equation measures the relationship between two clusters.
- 4. We want to find f such that this expression is as small as possible.

Normalized Min-Cut Problem



$$R = \sum w_{ij} (f_i - f_j)^2 \left(\frac{1}{vol(A)} + \frac{1}{vol(B)} \right) \qquad vol(A) = \sum_{i \in A} d_i$$
$$vol(B) = \sum_{i \in B} d_i$$

This is NP-hard! Spectral clustering is a relaxation of these.

Spectral Clustering

Spectral Clustering Algorithm

- Input
 - Data points

Hopland Soil Metagenomic Data

- 1 TB
- 1 sample
- Multi-sample and abundance based approach cannot be used

Spectral Clustering Algorithm

- Input : Data points
- Build similarity graph W and degree matrix D
- Compute graph Laplacian L
- Computer the first K eigenvectors v_1 , v_2 , ... v_K of the matrix
- Build the matrix $V \in \mathbb{R}^{n \times k}$ with eigenvectors as columns
- Cluster the points Z_i with the k-means algorithms in R^k

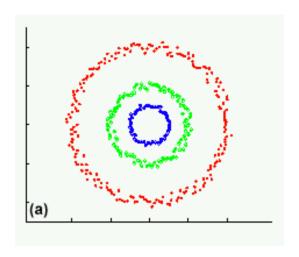
Dimensionality Reduction

$$n \times n \to n \times k$$

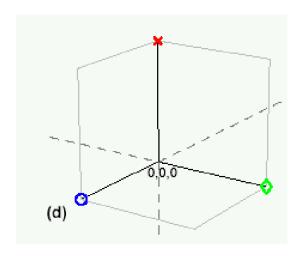
$$n \to k$$

How to interpret (1)

Original data

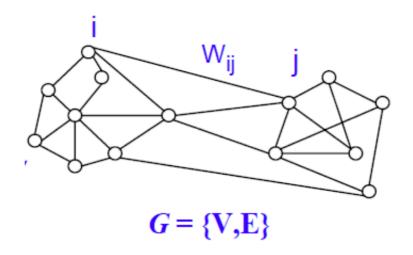


Projected data



Data are projected into a lower-dimensional space where they can be easily separable with simple clustering algorithm such as K-means clustering.

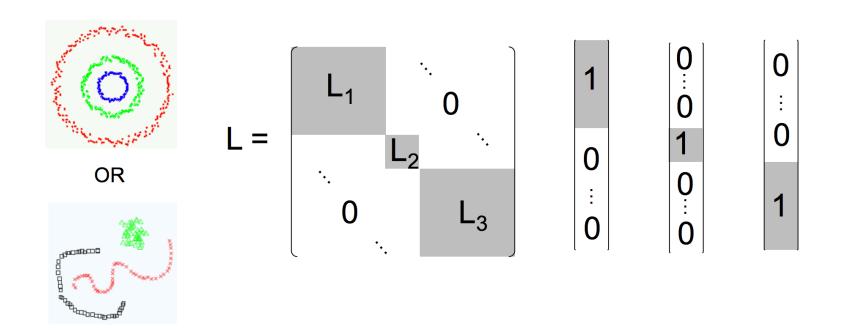
How to understand intuitively (1)



If the graph is totally connected, the first Laplacian eigenvector is constant, meaning all 1s

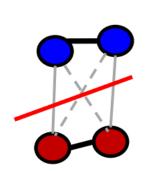
$$f_1 = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$

How to understand intuitively (2)



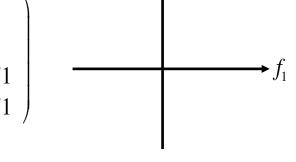
If the graph is disconnected and have k connected components, the graph Laplacian consists of diagonal blocks and the first K Laplacian eigenvectors are 1s of corresponding blocks.

How to understand intuitively (3)



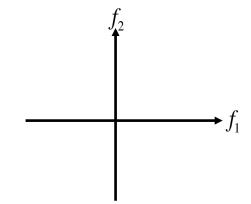
$$w = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

$$w = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} \qquad f_1 = \begin{pmatrix} 0.71 \\ 0.71 \\ 0 \\ 0 \end{pmatrix} \qquad f_2 = \begin{pmatrix} 0 \\ 0 \\ 0.71 \\ 0.71 \end{pmatrix}$$



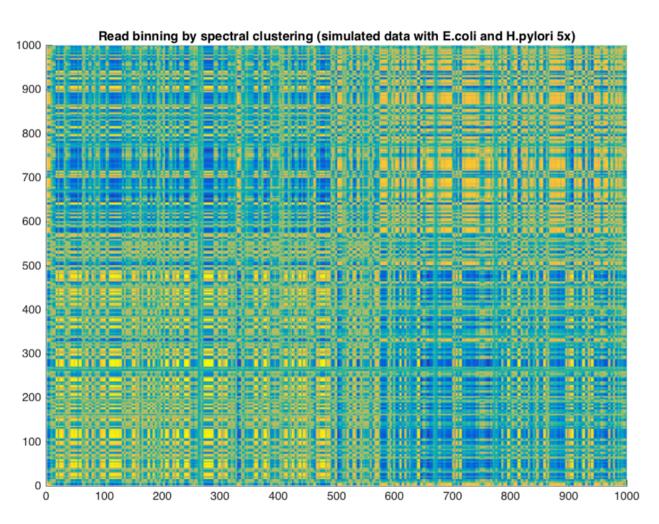
$$w = \begin{pmatrix} 1 & 1 & 0.2 & 0 \\ 1 & 1 & 0 & 0.1 \\ 0.2 & 0 & 1 & 1 \\ 0 & 0.1 & 1 & 1 \end{pmatrix} \quad f_1 = \begin{pmatrix} 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \end{pmatrix} \quad f_2 = \begin{pmatrix} 0.47 \\ 0.52 \\ -0.47 \\ -0.52 \end{pmatrix}$$

$$f_1 = \begin{pmatrix} 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \end{pmatrix} \qquad f_2 = \begin{pmatrix} 0.47 \\ 0.52 \\ -0.47 \\ -0.52 \end{pmatrix}$$



Applications: Metagenome assembly

Spectral clustering on simulated data



Q&A