

The Resurgence of Reference Quality Genome

Hayan Lee

Simons postdoctoral fellow Prokaryote Super Program @ JGI

Outline

- Background
 - Third-Gen sequencing technology
- The resurgence of reference quality genome (3Cs)
 - Contiguity
 - The next version of Lander-Waterman Statistics
 - How to model to predict de novo genome assembly performance
 - Support vector regression (SVR)
 - Completeness
 - Historical human genome quality by gene block analysis
 - → Correctness
 - The effectiveness of long read sequencing technology in de novo assembly
- Contributions

Background

Sanger + BAC-by-BAC Era (1995 to 2007)

- Very high quality reference genomes for human, mouse, worm, fly, rice,
 Arabidopsis and a select few other high value species.
- Contig sizes in the megabases, but costs in the 10s to 100s of millions of dollars

Next-Gen Era (2007 to current)

- Costs dropped, but genome quality suffered
- Genome finishing was completely abandoned; "exon-sized" contigs
- These low quality draft sequences are (1) missing important sequences,
 (2) lack context to discover regulatory elements or evolutionary patterns,
 and (3) contain many errors

Third-Gen Era (current)

- New biotechnologies (single molecule, chromatin assays, etc) and new algorithms (MHAP, LACHESIS, etc) are leading to the Resurgence of Reference Quality Genomes
- De novo assemblies of human and other large genomes with contig sizes over 1Mbp.

Third-Gen Technology

Long Read Sequencing: De novo assembly, SV analysis, phasing

Illumina/Moleculo

3-5kbp (Kuleshov et al. 2014)

Pacific Biosciences

10-15kbp (Berlin et al, 2014)

Oxford Nanopore

5-10kbp (Quick et al, 2014)

Long Spanning Technology: Chromosome Scaffolding, SV analysis, phasing

Molecular Barcoding

30-60kbp (10Xgenomics.com)

Optical Mapping

25-100kbp (Putnam et al, 2015)

Chromatin Assays

100-150kbp (Cao et al, 2014)

Many Questions are raised but...

Given a target genome,

- How long should the read length be?
- What coverage should be used?
- Given the read length and coverage,
 - How long are contigs? <- Contiguity prediction
 - How many contigs?
 - How many reads are in each contigs?
 - How big are the gaps?

Lander-Waterman Statistics

GENOMICS 2, 231-239 (1988)

Genomic Mapping by Fingerprinting Random Clones: A Mathematical Analysis

ERIC S. LANDER*, T AND MICHAEL S. WATERMANT

*Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142; †Harvard University, Cambridge, Massachusetts 02138; and ‡Departments of Mathematics and Molecular Biology, University of Southern California, Los Angeles, California 90089

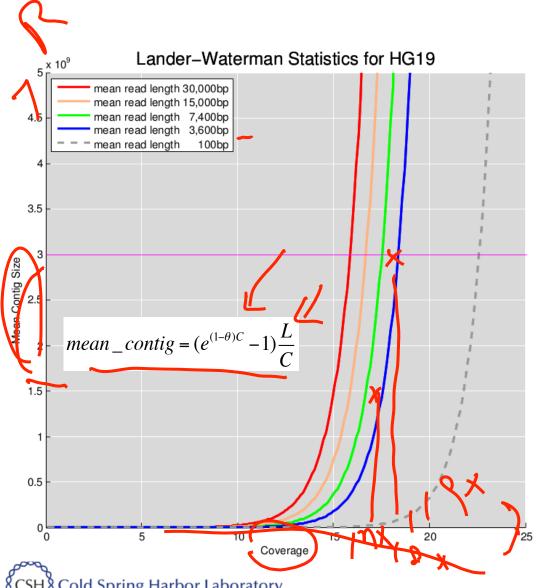
Received January 13, 1988; revised March 31, 1988

Results from physical mapping projects have recently been reported for the genomes of Escherichia coli, Saccharomyces cerevisiae, and Caenorhabditis elegans, and similar projects are currently being planned for other organisms. In such projects, the physical map is assembled by first "fingerprinting" a large number of clones chosen at random from a recombinant library and then inferring overlaps between clones with sufficiently similar fingerprints.

available region of up to several megabases and of studying its properties. In addition, the overlapping clones comprising the physical map would constitute the logical substrate for efforts to sequence an organism's genome.

Recently, three pioneering efforts have investigated the feasibility of assembling physical maps by means of "fingerprinting" randomly chosen clones. The fingerprints consisted of information about restriction

HG19 Genome Assembly Performance by Lander-Waterman Statistics



Two key observations

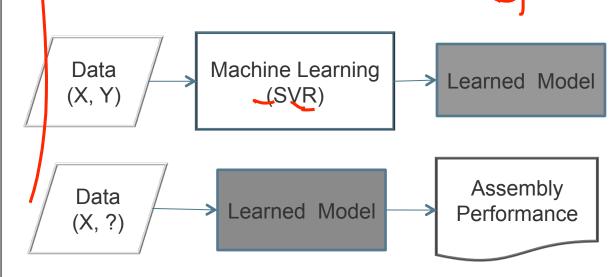
- 1. Contig over genome size
- 2. Read Length vs. Coverage

Technology vs. Money

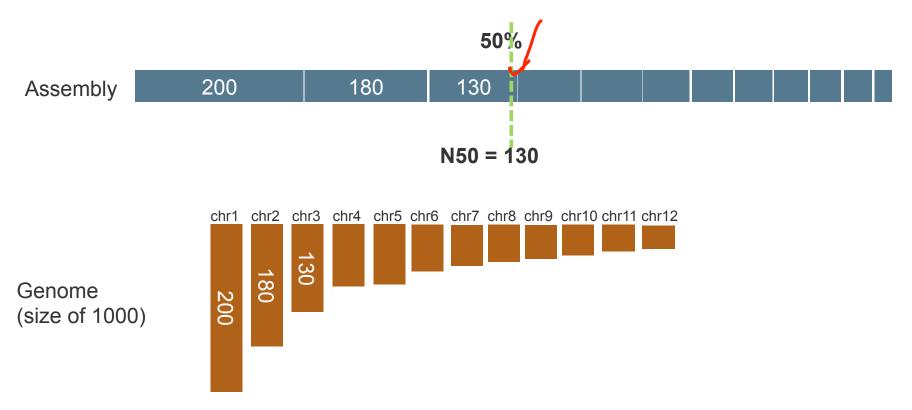
Empirical Data-driven Approach

	Model	ID	Genome Size
		10	Genome Size
	Organism M.iannaashii	- 1	1.664.070
	M.jannaschii	1	1,664,970
	C.hydrogenoformans	2	2,401,520
	E.coli	3	4,639,675
	Y.pestis	4	4,653,728
	B.anthracis	5	5,227,293
	A.mirum	6	8,248,144
(yeast	7	12,157,105
	Y.liporytica	8	20,502,981
	slime mold	9	34,338,145
	Red bread mold	10	41,037,538
	sea squirt	11	78,296,155
	roundworm	12	100,272,276
	green alga	13	112,305,447
	arabidopsis	14	119,667,750
(fruitily	15	130,450,100
	peach	16	227,252,106
	rice	17	370,792,118
	popiar	18	417,640,243
	tomato	19	781,666,411
	soybean	20	973,344,380
	turkey	21	1,061,998,909
	zebra fish	22	1,412,464,843
	lizard	23	1,799,126,364
	corn	24	2,066,432,718
	mouse	25	2,654,895,218
1	human	26	3,095,693,983

We carefully selected 26 species across tree
of life and exhaustively analyzed their
assemblies using simulated reads for 4
different length (6 for HG19) and 4 different
coverage per species

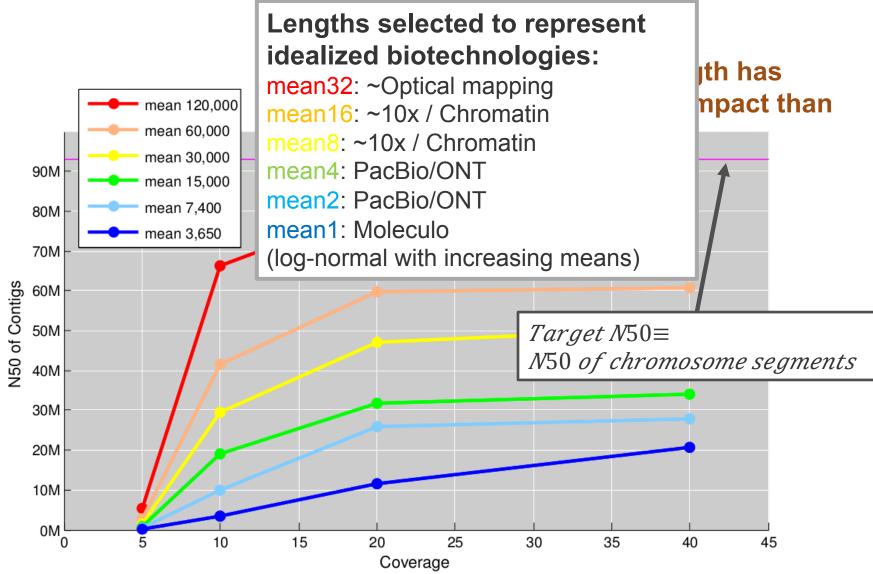


N50 : Contiguity Metric

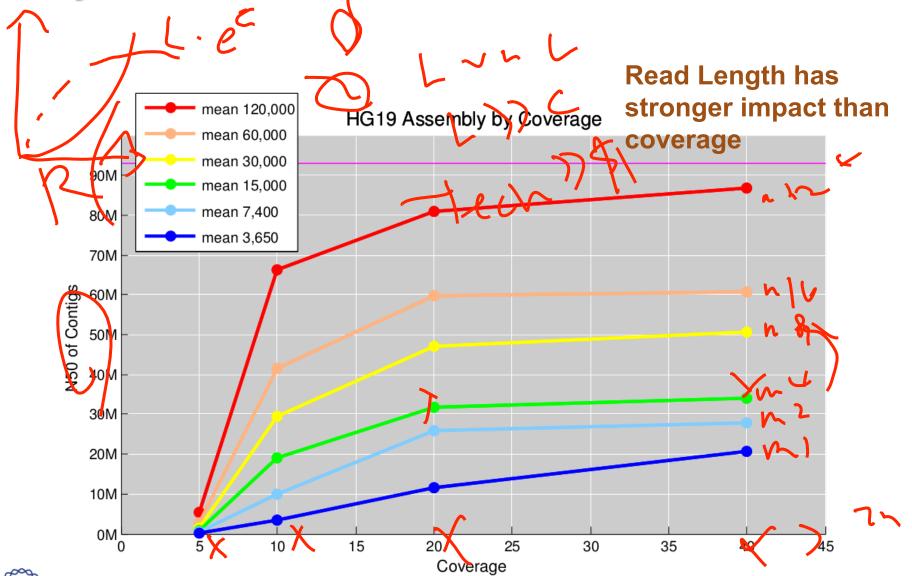


- N50 from assembly = 130
- N50 from chromosome segments (Target N50) = 130
- (Near) Perfect assembly
 - N50 of assembly ≈ N50 of chromosome segments

HG19 Genome Assembly Performance by Our Simulation



HG19 Genome Assembly Performance by Our Simulation



Why?

Lander-Waterman Statistics

- Assumptions!!!
- If genome is a random sequence, it will work
- It works only in low coverage
 3-5x
- It works for small genomes (< yeast)

Our Approach

- We tried to assume as little as possible.
- Instead of building on top of assumptions, we let the model learn from the data
- Empirical data-driven approach

Our Goal

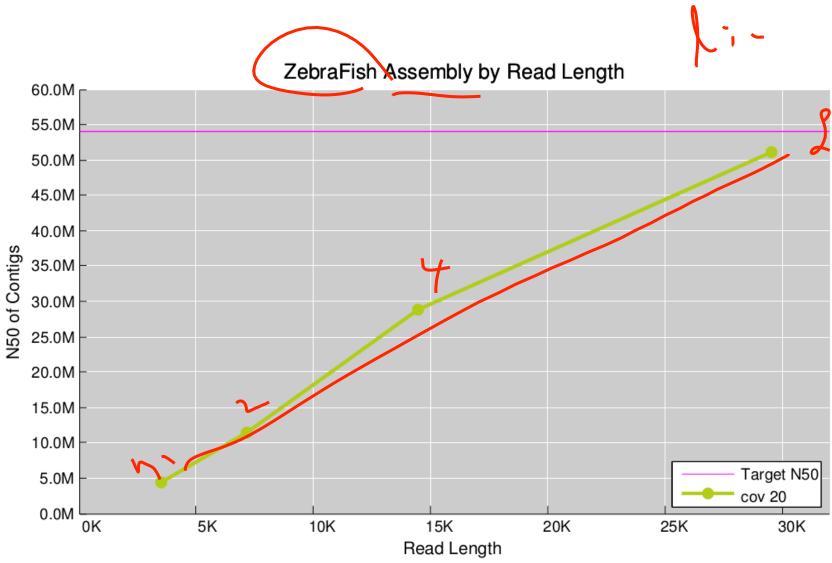
To predict genome assembly contiguity

$$Performance(\%) \equiv \frac{N50 \, from Assembly}{N50 \, from Chromosome Segments} \times 100$$

Read Length

- Read length is very important
- A matter of technology
- The longer is the better
- Quality was important but can be corrected
 - PacBio produces long reads, but low quality (~15% error rate)
 - Error correction pipeline are developed
 - Errors are corrected very accurately up to 99%

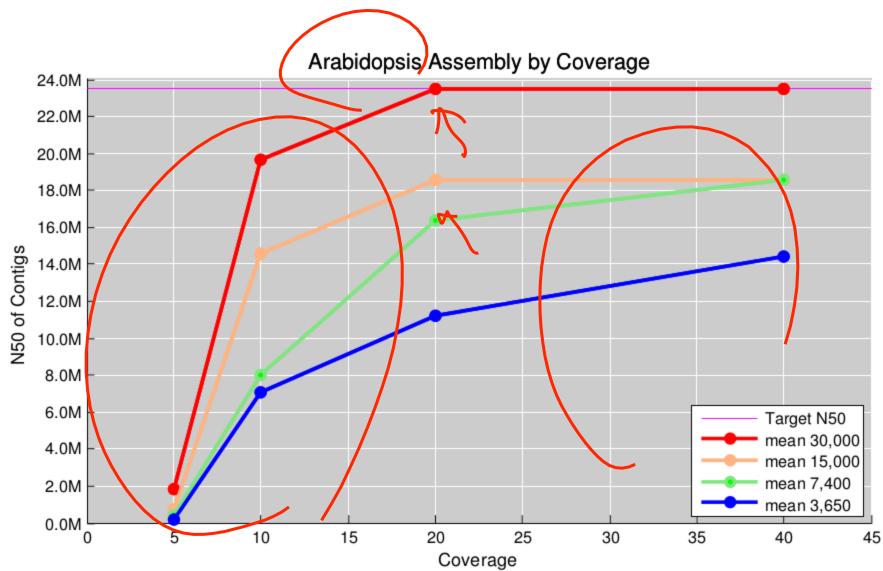
Read Length



Coverage

- A matter of money
- Using perfect reads, assembly performance increased for most genomes: Lower bound
- Using real reads, overall performance line will shift to the higher coverage
- The higher is the better (?)
- But still it suggests that there would be a threshold that can maximize your return on investment (ROI)

Coverage



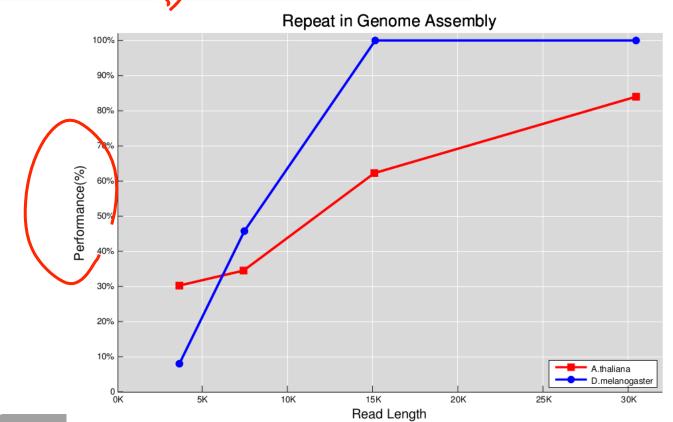
Repeats

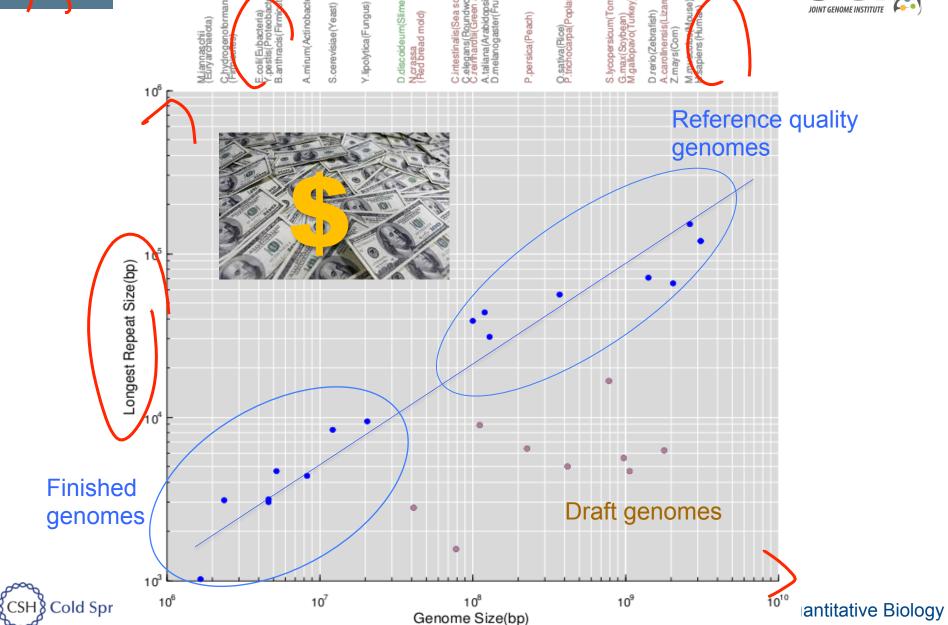
- Genome is not a random sequence
- Repeat hurts genome assembly performance
- Isolating the impact of repeats is not trivial
- Quantifying repeat characteristics is not trivial as well
 - The longest repeat size
 - # of repeats > read length

Assembly Challenge (3)

Repeats

	Arabidopsis (120M) Longest repeat: 44kbp	Fruit fly (130M) Longest repeat: 30kbp
Mean Read Length	# of repeats > read length	# of repeats > read length
3,650	210	5564
7,400	112	< 394
15,000	44	8
30,000	14	2





*

Longest Repeat Size and Genome Size

10⁷

Reference quality genomes

	Category		Description	Examples
	Fin	ished genome	All (or almost) bases are resolved with high confidence Quality is guaranteed as well as quantity.	E.coli, Yeast
F	Refe	rence genome	Quantity is well achieved but quality need to be improved (% of Ns, gene order etc.)	Human
		Draft genome	Even quality needs to be improved, short contigs Hard to expect quality. Gene are still found but unlikely to identify regulation networks.	Poplar, Turkey, Tomato, Lizard etc.

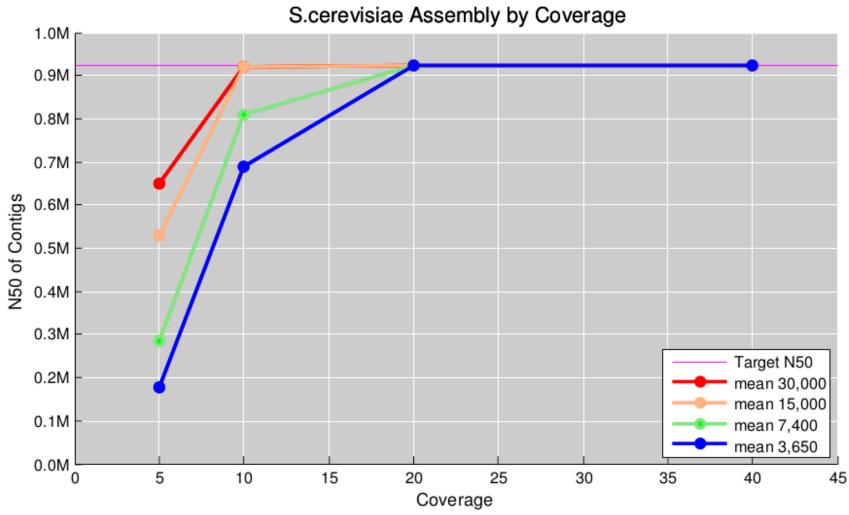
10⁶

10⁹

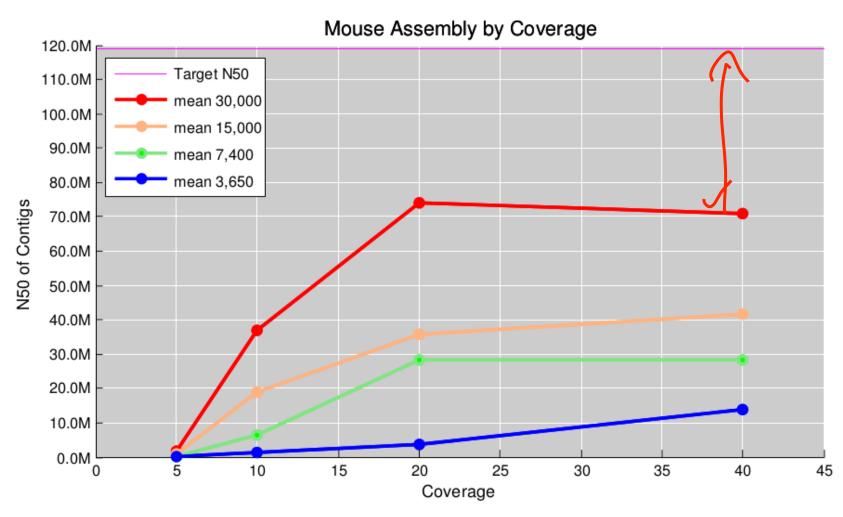
Genome Size

- Increase the assembly complexity
- Make a hard problem harder.

Genome Size



Genome Size



Feature Engineering

Correlation Coefficient

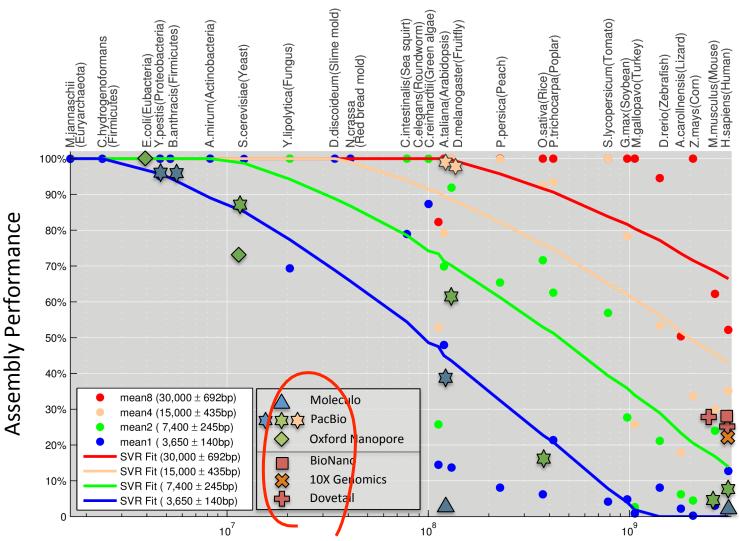
- Performance vs. genome size
 - R = -0.38
- Performance vs. read length
 - R = 0.2

- Performance and *log* (genome size)
 - R = -0.49
- Performance and *log* (read length)
 - R = 0.32

Inputs for Support Vector Regression

- Performance and log (genome size)/ log (read length)
 - R = 0.6
- Performance and *log* (coverage)
 - R = 0.58
- Performance and *log* (# of repeats longer than read length)
 - R = -0.44

Reference Genome Quality

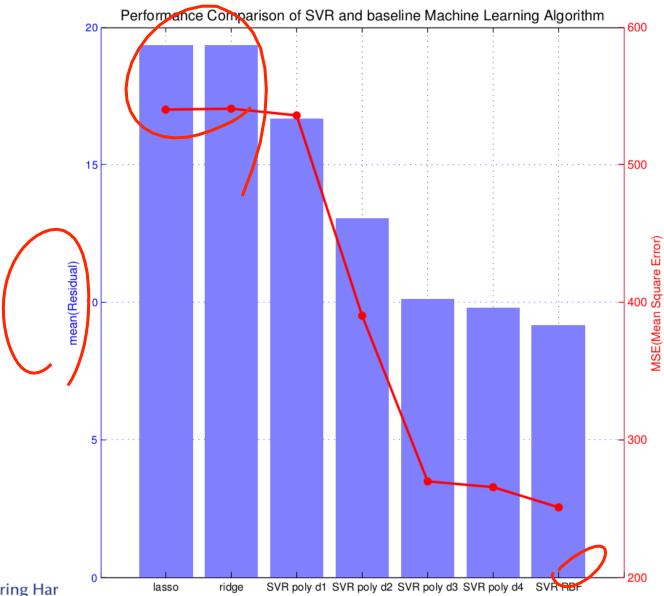


Genome Size (bp)

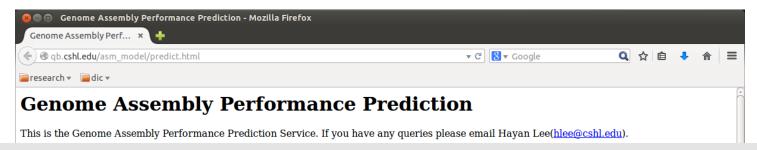
Cross Validation

- K-fold Cross Validation
- A variation of Leave-One-Out Cross Validation (LOOCV)
- Leave one species out approach (LOSO) <- Our approach
 - A variation of Leave-One-Out Cross Validation (LOOCV)
 - Use 25 species as training data, test 1 species to measure predictive power
 - Avoid overfitting
- Model selection by predictive power

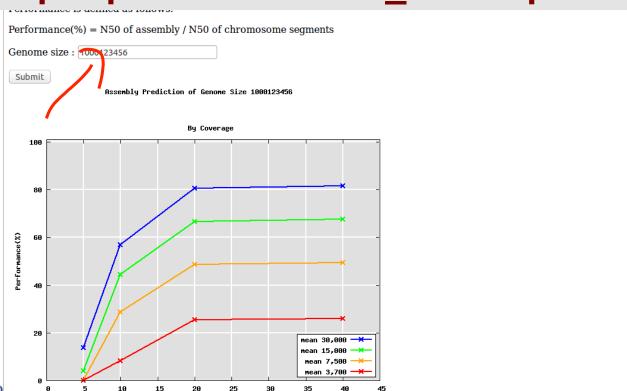
Prediction Performance



Web Service for Contiguity Prediction



Http://qb.cshl.edu/asm_model/predict.html

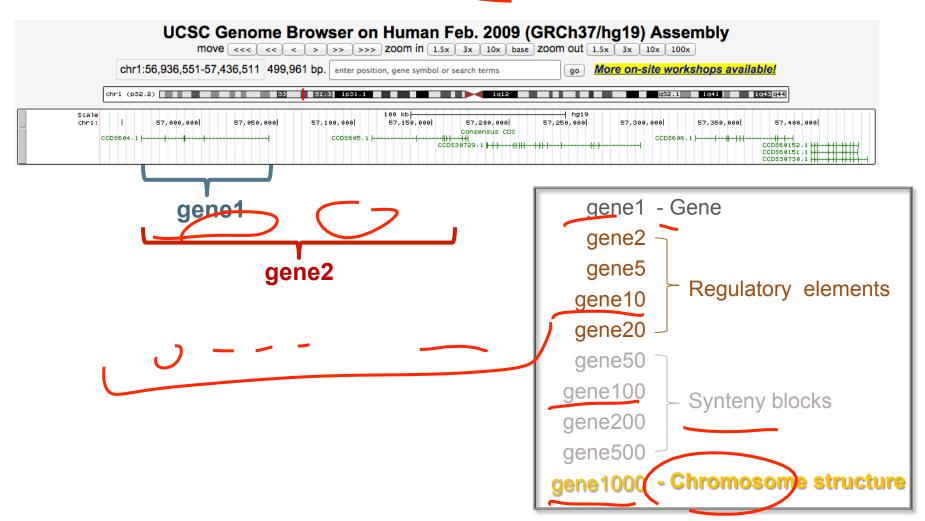


Coverage

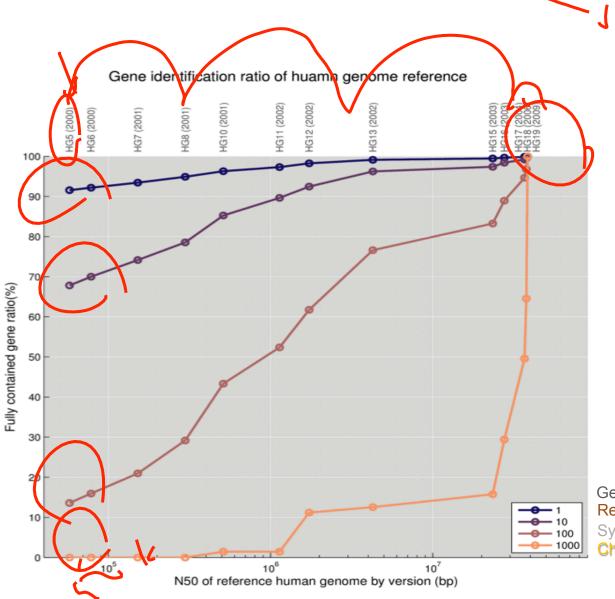
ative Biology

Completeness

Human Reference Genome Quality by gene block analysis



Completeness Human Reference Genome Quality by gene block analysis



Larger contigs and scaffolds empowers analysis at every possible level.

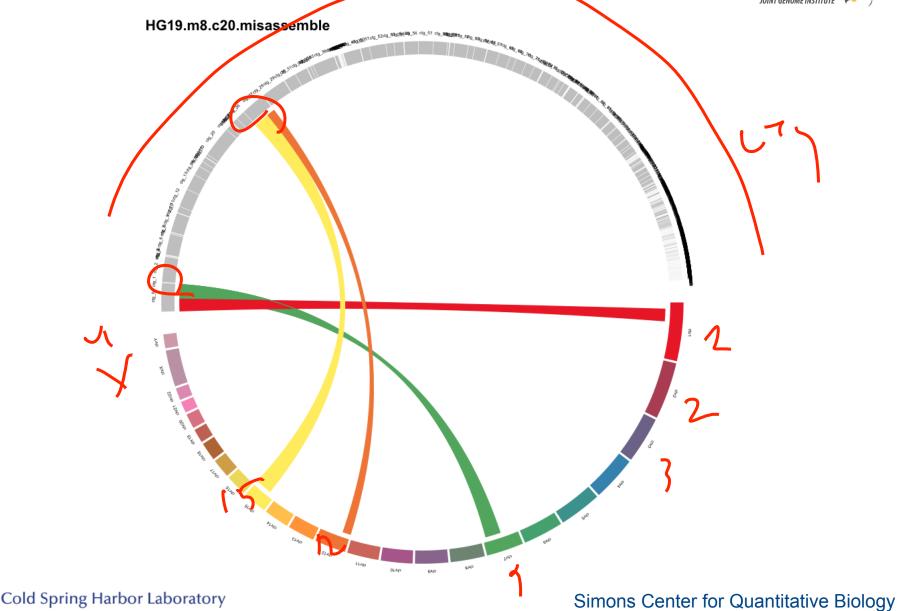
- SNPs (~10k clinically relevant)
- Genes
- Regulatory elements
- Synteny blocks
- Chromosome structure

Gene
Regulatory elements
Synteny blocks
Chromosome structure

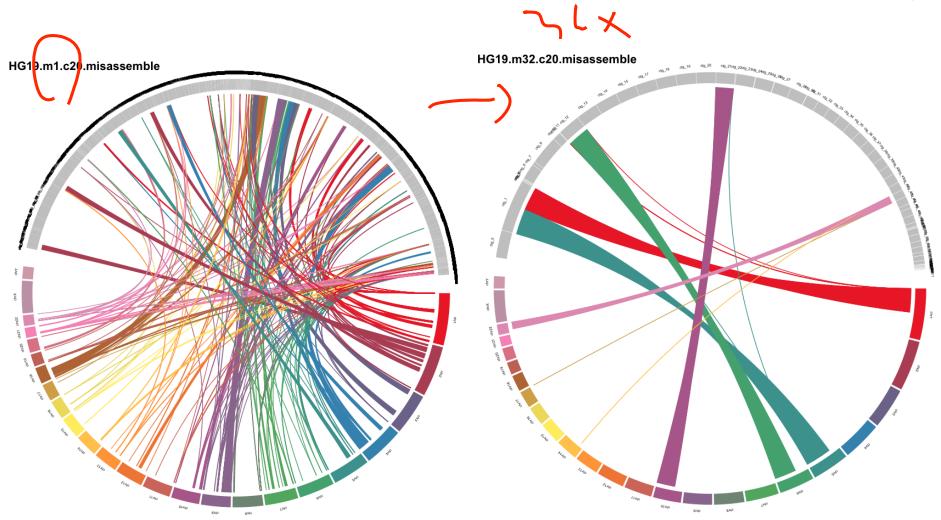
Simons Center for Quantitative Biology

Correctness

Misassembly - A critical error in de novo assembly



Misassembly Analysis in HG19



Long read sequencing technology helps to reduce both misassembly and breaks thus increase correctness of de novo genome assembly

Contributions

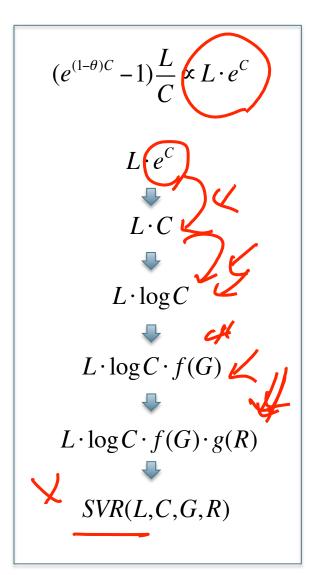
	Lander-Waterman Statistics	Lee-Schatz Model
Features	Read Length (L) Coverage (C)	Read Length (L) Coverage (C) Genome Size (G) Repeats (R)
Methodology	Hypothesis driven	Data driven
Algorithm	Poisson distribution	Support Vector Regression

The resurgence of reference quality genomes

 New long read sequencing and long span technologies are dramatically improving de novo genome assemblies

We can predict the new genome assembly performance in 15% of error residual boundary

- Read length, coverage and genome size used explicitly
- Repeats are included implicitly



Acknowledgements

- Schatz Lab
 Michael Schatz
 Fritz Sedlazeck
- ✓ James Gurtowski Sri Ramakrishnan Han fang Maria Nattestad Rob Aboukhalil Tyler Garvin Mohammad Amin Shoshana Marcus

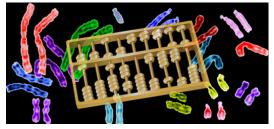
McCombie Lab
Dick McCombie
Sara Goodwin

Shinjae Yoo

Ravi Pandya Bob Davidson David Heckerman

University of São Paulo

Gabriel R.A. Margarido Jonas W. Gaiarsa Carolina G. Lembke Marie-Anne Van Sluys Glaucia M. Souza



Algorithmic Challenges in Genomics Jan. 11 – May 13, 2016

Thank You Q & A

The Resurgence of Reference Quality Genomes

Hayan Lee^{1,2}, James Gurtowski¹, Shinjae Yoo³, Maria Nattestad⁵, Shoshana Marcus⁴, Sara Goodwin¹, W. Richard McCombie¹, and Michael C. Schatz^{1,2}/_{*}*

¹Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724

²Department of Computer Science, Stony Brook University, Stony Brook, NY, 11794

³Computational Science Center, Brookhaven National Laboratory, Upton, NY, 11973

⁴Department of Mathematics and Computer Science, Kingsborough Community College, City University of New York, Brooklyn, NY 11234

⁵Watson School of Biological Sciences, Cold Spring Harbor, NY, 11724

