Computational identification of within individual contamination for more sensitive somatic mutation profiling

Sangwoo Kim, Kyowon Jeong, Kunal Bhutani, Hayan Lee, and Vineet Bafna

Department of Computer Science and Engineering, UCSD sak042@cs.ucsd.edu, vbafna@cs.ucsd.edu

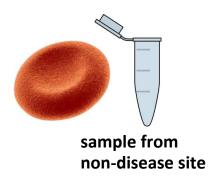
Contents

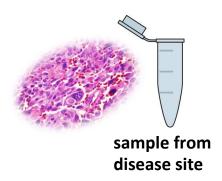
- Background
 - somatic mutation calling
 - The Problem: How to consider within individual contamination in somatic mutation calling
- Virmid:
 - The solution:
 - Estimate of sample heterogeneity (α)
 - Use α to call variants
 - Test & Validation
- Application:
 - Test on HME data set
 - New SNPs and their functions
- Summary and Conclusions

Variant calling and Within individual contamination

BACKGROUND

finding somatic mutations





reference sequence (e.g. hg19)

TGATGATT
TGATGATT
TGATGATT
TGATGATT
TGATGATT
TGATGATT
TGATGATT
TGATGATT
TGATGATT

ACTCCATG
ACGCCCTG
ACGCCCTG
ACGCCATG
ACGCCATG
ACGCCATG
ACGCCATG
ACGCCATG
ACGCCCTG

- UnifiedGenotyper
- VarScan
- SomaticSniper
- . . .

Using a mixed model

ORIGINAL PAPER

Vol. 28 no. 7 2012, pages 907-913 doi:10.1093/bioinformatics/bts053

Sequence analysis

Advance Access publication January 27, 2012

JointSNVMix: a probabilistic model for accurate detection of somatic mutations in normal/tumour paired next-generation sequencing data

Andrew Roth¹, Jiarui Ding^{1,3}, Ryan Morin², Anamaria Crisan¹, Gavin Ha¹, Ryan Giuliany¹, Ali Bashashati¹, Martin Hirst², Gulisa Turashvili¹, Arusha Oloumi¹, Marco A. Marra², Samuel Aparicio 1,4 and Sohrab P. Shah 1,3,4,*

¹Department of Molecular Oncology, BC Cancer Agency, ²Canada's Michael Smith Genome Sciences Centre, ³Department of Computer Science and ⁴Department of Pathology, University of British Columbia, Vancouver, BC, Canada

Associate Editor: Alex Bateman

ABSTRACT

Motivation: Identification of somatic single nucleotide variants (SNVs) in tumour genomes is a necessary step in defining seen a number of studies exploring the mutational landscapes of various cancer subtypes. NGS investigations into prostate (Berger et al., 2011), breast (Ding et al., 2010; Shah et al., 2009a), ovarian

BIOINFORMATICS ORIGINAL PAPER

Vol. 28 no. 14 2012, pages 1811-1817 doi:10.1093/bioinformatics/bts271

Genome analysis

Advance Access publication May 10, 2012

Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs

Christopher T. Saunders^{1,*}, Wendy S. W. Wong², Sajani Swamy¹, Jennifer Becg², Lisa J. Murray² and R. Keira Cheetham²

¹Illumina, Inc., 5200 Illumina Way, San Diego, CA 92122, USA and ²Illumina Cambridge Ltd., Chesterford Research Park, Little Chesterford, Essex CB10 1XL, UK

Associate Editor: Michael Brudno

Motivation: Whole genome and exome sequencing of matched tumor-normal sample pairs is becoming routine in cancer research. The consequent increased demand for somatic variant analysis of saired camples requires methods appointing to model this proble

calling methods, particularly for SNVs and small indels where the number of somatic variants can easily overwhelm manual review. An additional challenge for somatic variant calling on matched tumornormal samples is robust handling of impurity and copy-number variation in the tumor sample ideally without requiring external

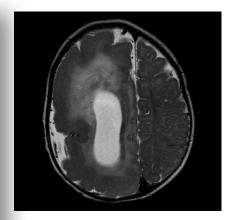
nop(AB), p(AB), p(BB)disp(AB), p(AB), p(BB)

disease $\blacksquare AA&AR&RR$ normal **■ A Q** 1 & *p* ↓ 12 & *p* ↓ 13 @ **AB@B**&p↓22 &p↓23 @p↓31 $\mathbb{R}_{p}/32 \& p/33$

G: joint genotype probability matrix

De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly

Jeong Ho Lee^{1,2,9}, My Huynh^{3,4}, Jennifer L Silhavy^{1,2}, Sangwoo Kim⁵, Tracy Dixon-Salazar^{1,2}, Andrew Heiberg^{1,2}, Eric Scott^{1,2}, Vineet Bafna⁵, Kiley J Hill^{1,2}, Adrienne Collazo^{1,2}, Vincent Funari^{6,7}, Carsten Russ⁸, Stacey B Gabriel⁸, Gary W Mathern^{3,4,10} & Joseph G Gleeson^{1,2,10}



Focal cortical dysplasia

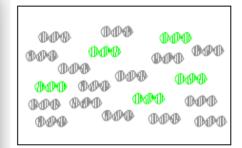
Universal noninvasive detection of solid organ transplant rejection

Thomas M. Snyder^{a,b}, Kiran K. Khush^c, Hannah A. Valantine^{c,1}, and Stephen R. Quake^{a,b,1}

^aThe Howard Hughes Medical Institute and ^bDepartments of Applied Physics and Bioengineering, Stanford University, Stanford, CA 94305; and ^cDivision of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305

Edited* by Leonard A. Herzenberg, Stanford University, Stanford, CA, and approved February 24, 2011 (received for review September 15, 2010)

It is challenging to monitor the health of transplanted organs, particularly with respect to rejection by the host immune system. Because transplanted organs have genomes that are distinct from the recipient's genome, we used high throughput shotgun sequencing to develop a universal noninvasive approach to monitoring organ health. We analyzed cell-free DNA circulating in the blood of heart donor-specific chromosome Y has been detected in recipient urine and plasma (16–19). To date, most measurements of cell-free DNA in organ transplantation have been limited to the special case of women who receive male organs, which has prevented the widespread use of cell-free DNA as a diagnostic tool, because female recipients of male donor organs represent less than a quarter of all transplant procedures HI A markers can be quantified to identify



Cell free DNA in recipients' blood

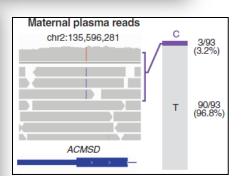
RESEARCH ARTICLE

GENOMICS

Noninvasive Whole-Genome Sequencing of a **Human Fetus**

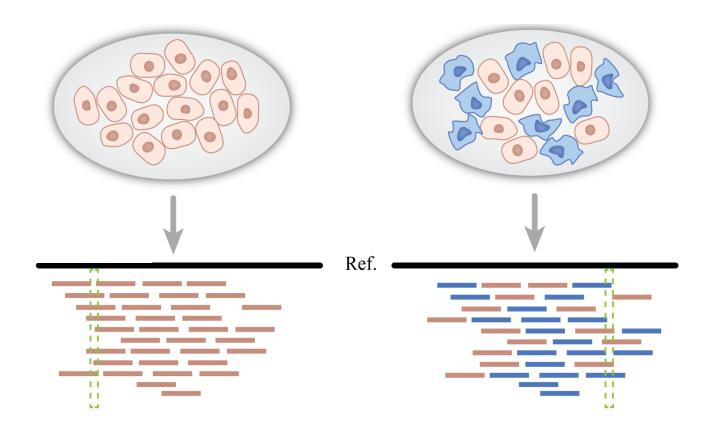
Jacob O. Kitzman, 1* Matthew W. Snyder, 1 Mario Ventura, 1,2 Alexandra P. Lewis, 1 Ruolan Qiu, 1 La Vone E. Simmons, Hilary S. Gammill, 3,4 Craig E. Rubens, 5,6 Donna A. Santillan, 7 Jeffrey C. Murray, Holly K. Tabor, 5,9 Michael J. Bamshad, 1,5 Evan E. Eichler, 1,10 Jay Shendure 1*

Analysis of cell-free fetal DNA in maternal plasma holds promise for the development of noninvasive prenatal genetic diagnostics. Previous studies have been restricted to detection of fetal trisomies, to specific paternally inherited mutations, or to genotyping common polymorphisms using material obtained invasively, for example, through chorionic villus sampling. Here, we combine genome sequencing of two parents, genome-wide maternal through chorionic villus sampling. Here, we combine genome sequencing or two parents, genome was inaccined and Engineering haplotyping, and deep sequencing of maternal plasma DNA to noninvasively determine the genome sequence and Engineering maternal blood of a human fetus at 18.5 weeks of gestation, Inheritance was predicted at 2.8×10^6 parental heterozygous sites

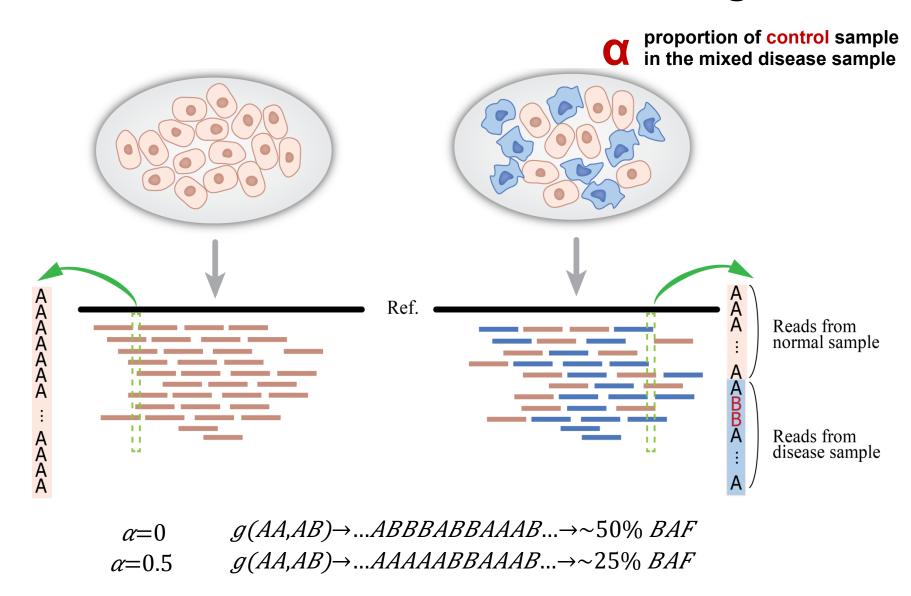


Fetus genome in

Sample heterogeneity

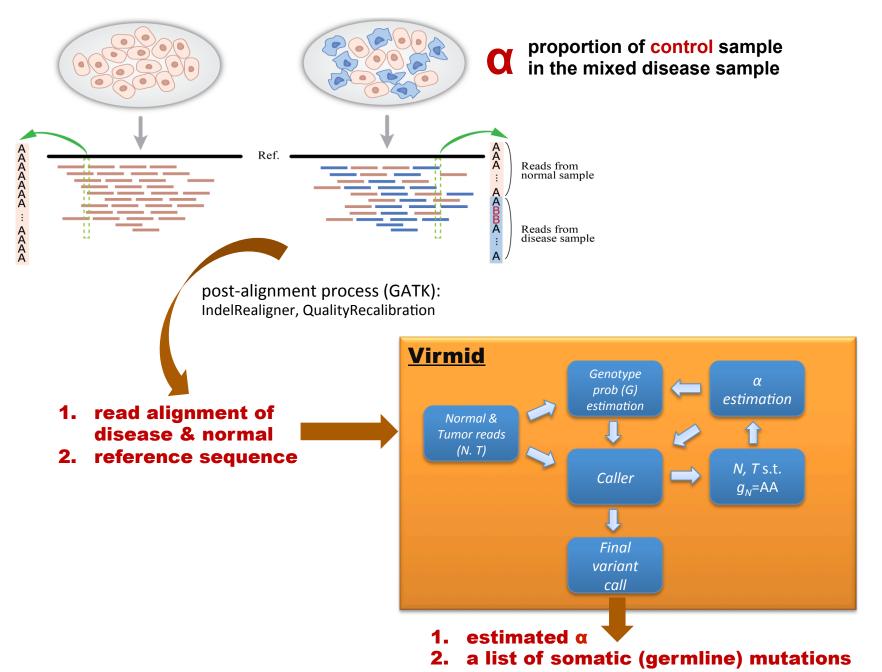


Loss of somatic mutation calling

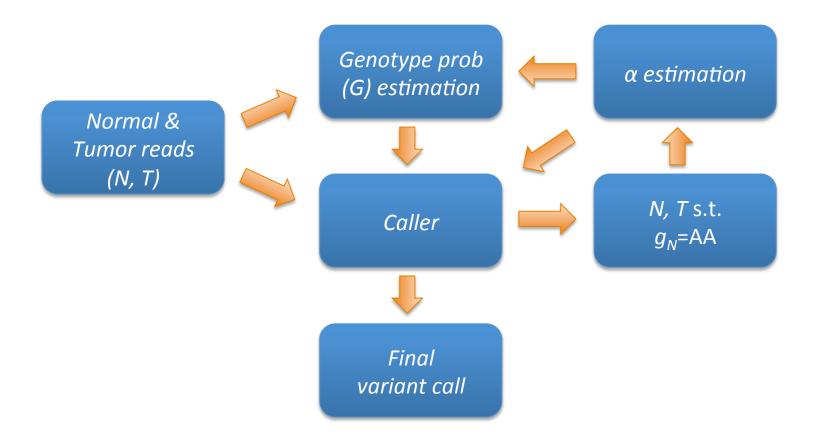


Virtual Microdissection for mixed disease sample

VIRMID



Virmid Model



Likelihood function

Likelihood function

$$L(\alpha, G \mid N, T) = P_{\alpha, G}(N, T)$$

$$= \prod_{i} \sum_{g_{N}, g_{T}} P_{\alpha, G}(g_{N}, g_{T}) \prod_{j} P_{\alpha, G}(N_{j}^{i} \mid g_{N}) \cdot \prod_{k} P_{\alpha, G}(T_{k}^{i} \mid g_{N}, g_{T})$$

Joint genotype probablity that we obstainty the towerods serve the tumor reads reads given the genorypecoferorypes and plantal tumor sample

- Assumptions
 - Reads at different positions are independent
 - If genotypes are given, reads in a positions are independent
- Considers
 - Read error rate
 - Mapping error rate
 - Other biases

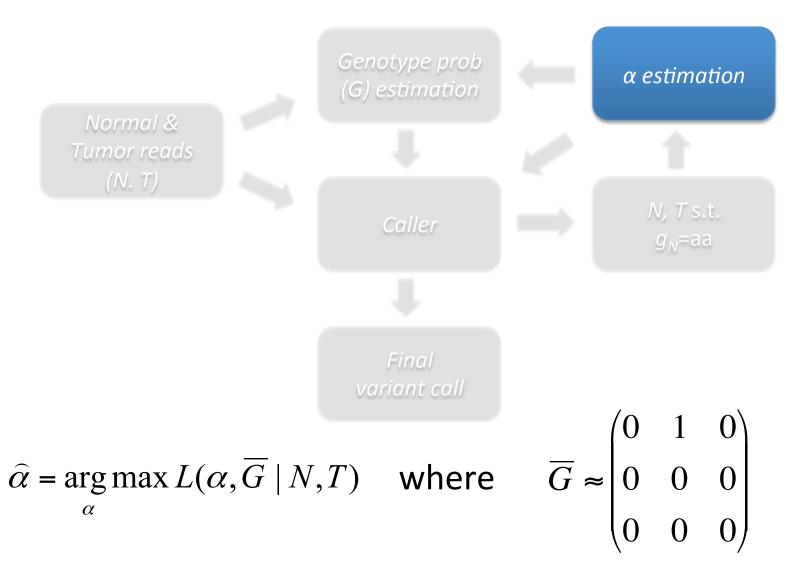
Estimation of genotype probabilities

Genotype prob (G) estimation
$$\alpha \text{ estimation}$$
Normal & Tumor reads (N. T)
$$Caller \qquad \qquad N, T \text{ s.t.} \\ g_N = AA$$

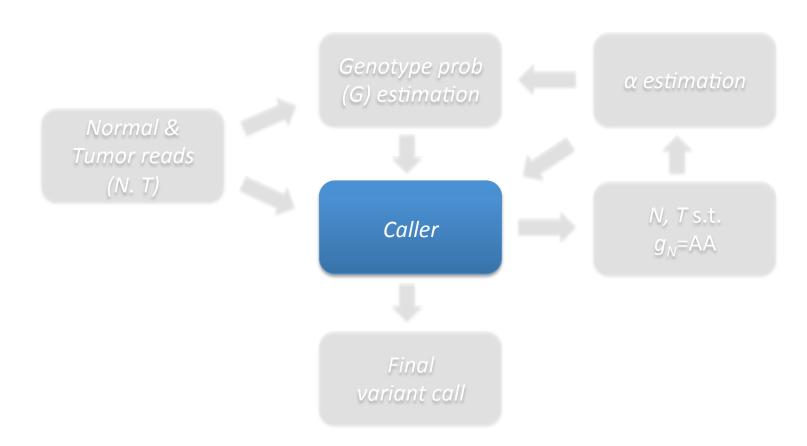
$$Final \\ variant call$$

$$\hat{G} = \arg\max_G L(\hat{\alpha}, G \mid N, T)$$

Estimation of α

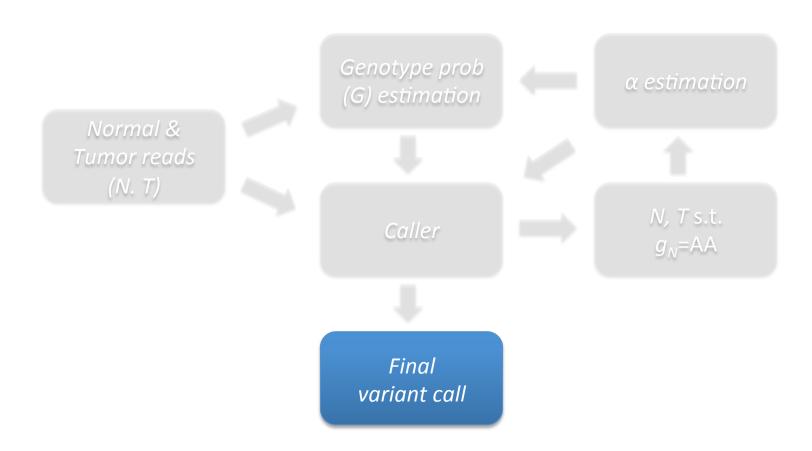


Variant Caller



- Use of MAP (Maximum a posteriori probability estimate)
- Use estimated G as a priori distribution
- Estimate allele frequencies

Final Variant Call



- Output final variants after α converged
- Call if the probability of being somatic mutation is higher than not

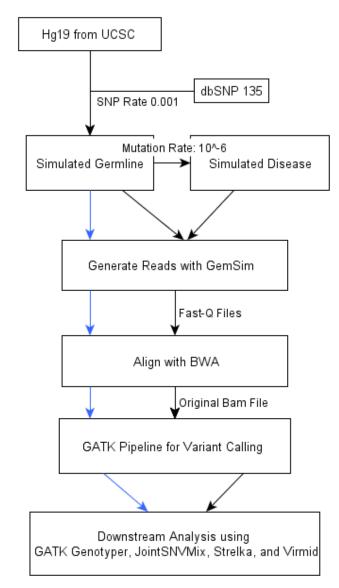
Validation

simulated mutation & mixture in hg19 Chr 1

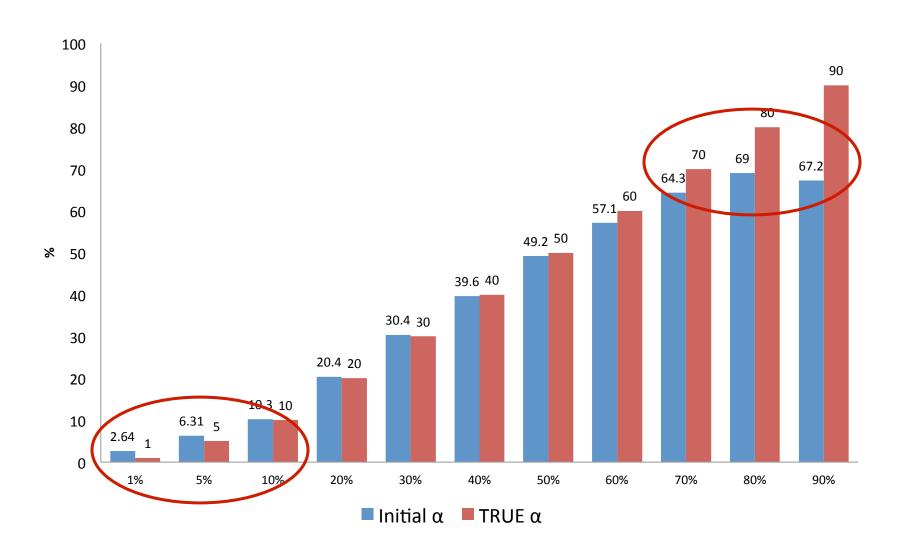
tested α values:

1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%

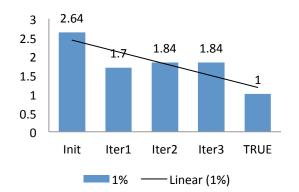
true somatic (germline) mutations: 2226 (228,018)

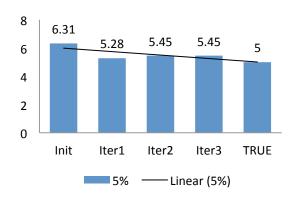


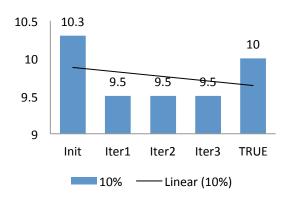
Estimation of α



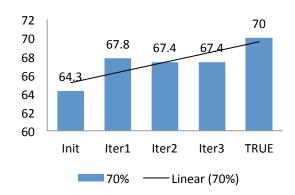
Reducing biases

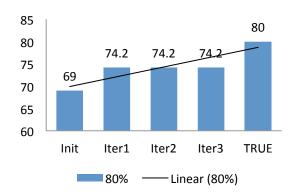


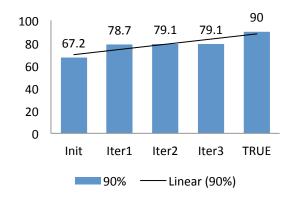




Changes in low α

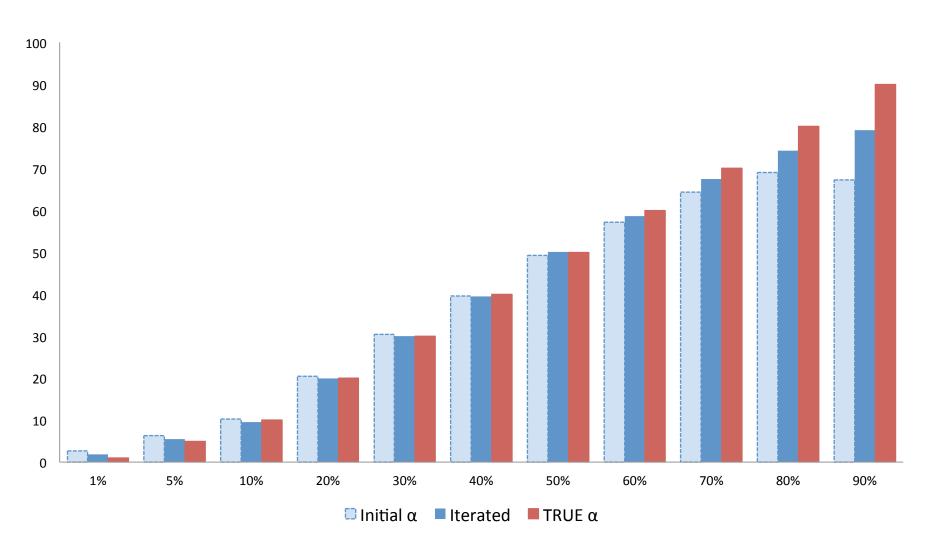




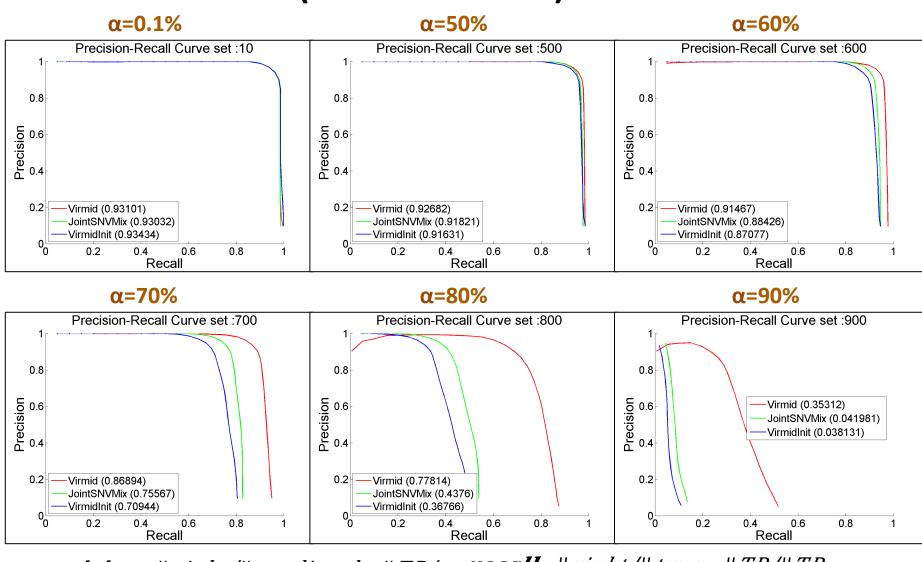


Changes in high α

α after iteration

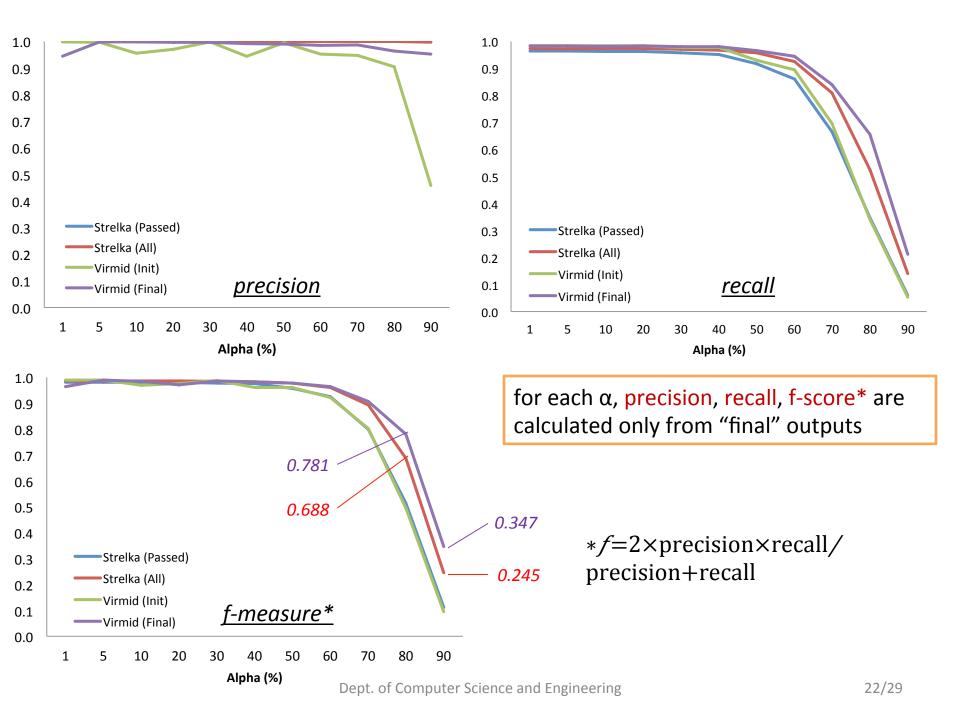


PR (Precision-Recall) Curves



precision=#right/#predicted =#TP/
#TP+#FP

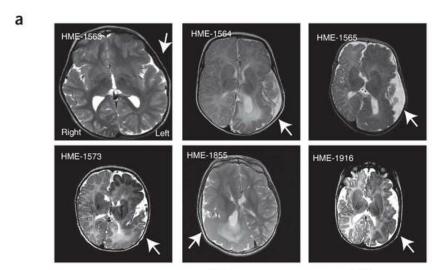
recall=#right/#true=#TP/#TP +#FN



HME data

APPLICATION

HME-data



	Blood		Brain		
·	Mut	Ref counts	Mut	Ref counts	Mut allele (%)
PIK3CA c.1633G>A (HME-1573)	0	121	9	47	16%
AKT3 c.49C>T (HME-1565)	0	49	9	23	28%
MTOR c.4448C>T (HME-1563)	0	298	17	159	9.7%

С	PIK3CA c.1633G>A (p.Glu545Lys) (HME-1573)		AK1	AKT3 c.49C>T (p.Glu17Lys) (HME-1565)			MTOR c.4448C>T (p.Cys1483Tyr) (HME-1563)					
	Ble	boo	Bra	in	В	lood	Bra	in	Bloo	d	Brai	n.
87 65 76 87	A (0%)	G (100%)	A (36.6%) 60 T 50 + 40 +	G (63,4%)	G (100%)	A (0%)	3 🛊		200	10- 8- 6-	T (8.1%)	C (91.9%)
Intensity	5,9	50 6,0	30 20 10 10 5, 0	50 6,0	4 2 0 0 6,95	o 7,000	6,950	7,000	5,450	5,500	5,450	5,500
						Ma	ss					

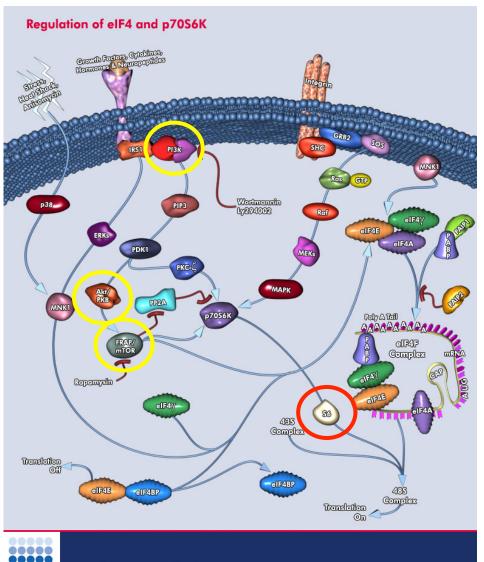
Sample	Previous Mut.	Mut. site
HME-1563	mTOR	Cys1483Tyr
HME-1565	AKT3	Glu17Lys
HME-1573	PIK3CA	Glu545Lys
HME-1574	-	-
HME-1620	-	-

SNPs called by JointSNVMix2

Variant calling with Virmid

Sample	Est. Alpha	Previous Calls	Virmid Calls	Misc.
HME-1563	67.1%	1547	1431	mTOR in overlap
HME-1565	66.6%	1328	1761	AKT3 in overlap
HME-1573	62.8%	1386	940	PIK3CA in overlap
HME-1574	66.4%	1440	3285	
HME-1620	65.8%	1335	4165	

More variants in a pathway



Chr	Pos	ref	sample	Func	AA Change	Gene
9	33796766	С	T	stop	GLN,stop	PRSS3
7	1.02E+08	G	Α	missense	ARG,CYS	SPDYE6
3	25777564	G	T	missense	ASP,GLU	NGLY1
3	25777564	G	T	missense	ASP,GLU	NGLY1
3	25777564	G	Т	missense	ASP,GLU	NGLY1
6	33410683	G	С	missense	ARG,PRO	SYNGAP1
6	30522401	Α	С	missense	VAL,GLY	GNL1
18	29488748	Α	G	missense	ILE,THR	TRAPPC8
10	1.14E+08	С	Α	missense	CYS,PHE	GPAM
19	42795178	Τ	G	missense	VAL,GLY	CIC
1	16916476	G	С	missense	LEU,VAL	NBPF1
6	1.09E+08	С	G	missense	LEU,VAL	ARMC2
16	54967289	С	Α	stop	SER,stop	IRX5
10	1.21E+08	Т	С	splice-5	none	GRK5
5	71490955	С	Α	missense	ASP,GLU	MAP1B

CONCLUSIONS

Conclusions

- Within individual contamination seriously affects somatic variant calling
- Virmid accurately infers the proportion of non-disease sample in a potentially mixed disease sample
- Virmid increases accuracy (precision and recall) by considering the within individual contamination
- By applying Virmid on disease samples with heterogeneity issues, we can identify more somatic variants to correlate with phenotypes

Acknowledgements

University of California, San Diego

Dept. of Computer Science and Engineering

Vineet Bafna, Ph.D. Kunal Bhutani

Dept. of Electrical and Computer Engineering

Kyowon Jeong

Joseph Gleeson, M.D, Ph.D.

Jeong Ho Lee, M.D, Ph.D. (KAIST)

Dept. of Bioengineering **Hojung Nam, Ph.D.**

Stony Brook University

Dept. of Computer Science
Hayan Lee

Funding:

P01 HD070494-01 and R01 HG004962

Thank you

SUPPLEMENTARY SLIDES

Estimating calls

A

Α

Α

Α

Α

Т

sequencing error = e

True genotype = "AA" <u>and</u> no sequencing error

$$-P1-eg=AAP(g=AA)$$

- True genotype = "AT"
 - Read was generated from 'A' allele <u>and</u> no sequencing error

$$-1/2 *P1-eg=ATP(g=AT)$$

 Read was generated from 'T' allele <u>and</u> sequencing error <u>and</u> 'A' was generated by chance

$$-1/2*1/4*Peg=ATP(g=AT)$$

True genotype = "TT" <u>and</u> sequencing error

$$-Peg=TTP(g=TT)$$

Estimating calls (cont'd)

A

Α

A

Α

Т

sequencing error = e

- True genotype = "AA" <u>and</u> sequencing error
 - -Peg=AAP(g=AA)
- True genotype = "AT"
 - Read was generated from 'A' allele <u>and</u> sequencing error <u>and</u> 'T' was generated by chance

$$-1/2*1/4*Peg=ATP(g=AT)$$

Read was generated from 'T' allele <u>and</u> no sequencing error

$$-1/2 *P1-eg=ATP(g=AT)$$

• True genotype = "TT" <u>and</u> no sequencing error

$$-Peg=TTP(g=TT)$$

Estimating calls (Cont'd)

$$P(AA|D) = PDAA P(AA)/PDAA P(AA) + PDAB P(AB) + PDBB P(BB)$$

$$=PDAA\ P(AA)/\Sigma gi \in G \uparrow G = \{AA,AT,TT\} \blacksquare PDgi\ P(gi)$$

$$P(AB|D)=...$$

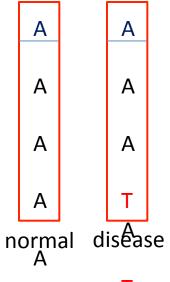
$$P(BB|D)=...$$

•	Т	
	•	
	Α	

	G=AA	G=AB	G=BB
Probability	56%	40%	4%

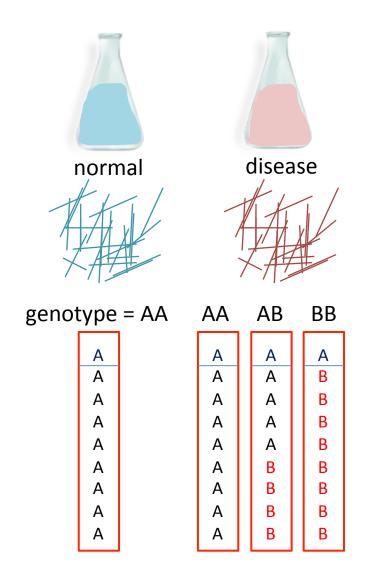
Calling somatic mutations

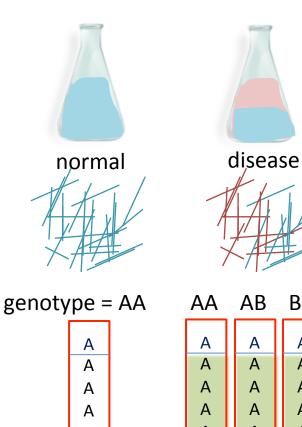
- Call variants for disease sample
 - And filter out if there's a same variant in normal sample (GATK-UnifiedGenotyper)
- Calculate a joint probability for totally 9 (3 x 3) genotypes (jointSNVMix, Strelka)



	G _T =AA	G _T =AB	G _T =BB
G _N =AA	10%	80%	2%
G _N =AB	0.5%	5%	1%
G _N =BB	0.1%	0.4%	1%

Within individual contamination

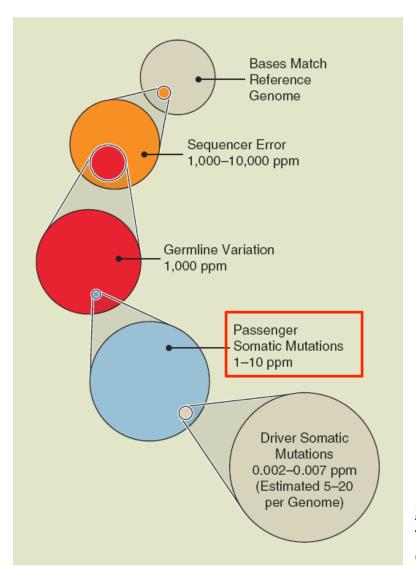




Α

read from normal

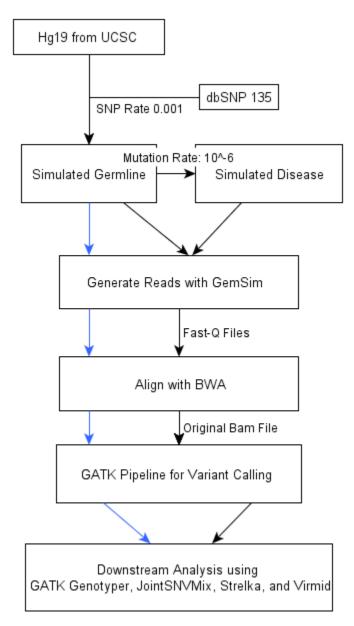
Somatic mutations are rare and difficult to find



<u>Signal Processing Magazine, IEEE</u>_Developing Algorithms to Discover Novel Cancer Genes: A look at the challenges and approaches

Competitor Tools

- Other NextGen Tools
 - VarScan
 - Somatic Sniper
- SNP-Array Tools
 - Absolute
 - OncoSNP



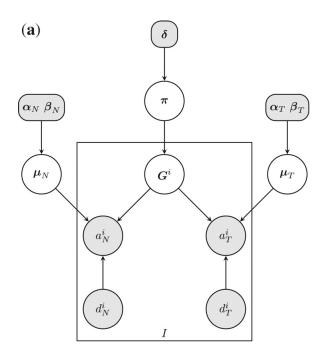
Workflow

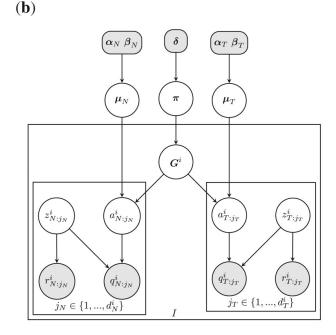
• GATK Unified Genotyper:

- JointSNVMix:
 - Default Settings with the joint_snv_mix_two option
- Strelka
 - Default settings with the bwa option

JointSNVMix1

JointSNVMix2





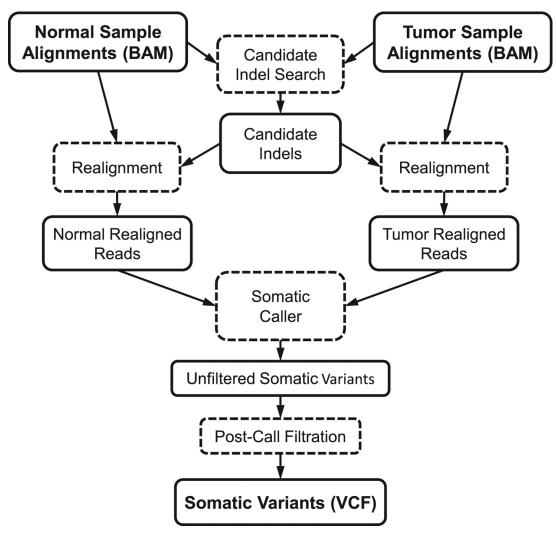
$$\begin{array}{cccc} \boldsymbol{\pi} & \sim & \mathrm{Dirichlet}(\boldsymbol{\pi}|\boldsymbol{\delta}) \\ \boldsymbol{G}^i|\boldsymbol{\pi} & \sim & \mathrm{Multinomial}(\boldsymbol{G}^i|\boldsymbol{\pi}) \\ a_{N:j_N}^i|G_{(g_N,g_T)}^i = 1, \boldsymbol{\mu}_N & \sim & \mathrm{Bernoulli}(a_{N:j_N}^i|\mu_{N:g_N}) \\ & z_{N:j_N}^i & \sim & \mathrm{Bernoulli}(z_{N:j_N}^i|0.5) \\ q_{N:j_N}^i|a_{N:j_N}^i, z_{N:j_N}^i & \sim & f(q_{N:j_N}^i|a_{N:j_N}^i, z_{N:j_N}^i) \\ & & r_{N:j_N}^i|z_{N:j_N}^i & \sim & g(r_{N:j_N}^i|z_{N:j_N}^i) \\ & & \mu_{x:g}|\alpha_{x:g}, \beta_{x:g} & \sim & \mathrm{Beta}(\mu_{x:g}|\alpha_{x:g}, \beta_{x:g}) \end{array}$$

Roth A et al. Bioinformatics 2012;28:907-913

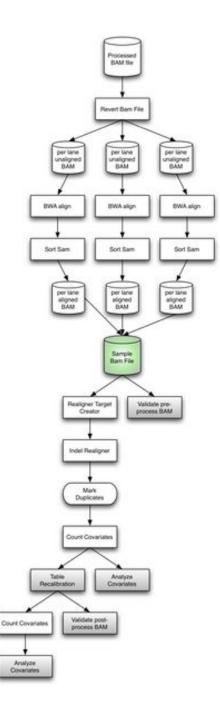
Strelka

- Developed at Illumina
- Maximizes posterior probability of the joint tumor and normal allele frequencies
 - Other tools only look at genotypes in terms of matching reference or not.
- Is able to call somatic variants as well as detect insertions and deletions
- Does not implicitly calculate contamination or tumor impurity
- High filtering: less false positives

Strelka



Saunders C T et al. Bioinformatics 2012;28:1811-1817



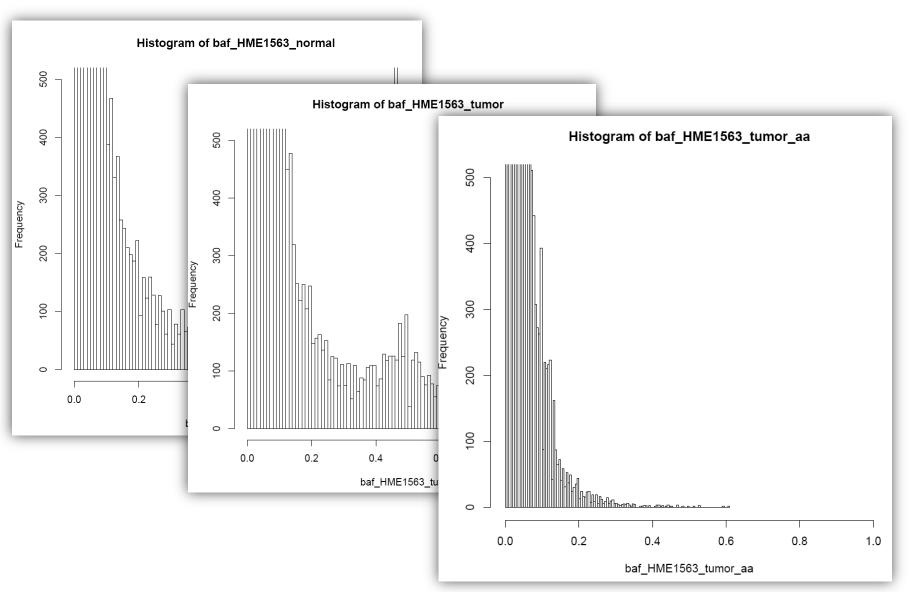
GATK Best Practices

http://www.broadinstitute.org/gsa/wiki/index.php/Data_Processing_Pipeline

AUC (Area under curve)

Alpha (%)	JointSNVMix	Virmid(<i>init</i>)	Virmid	AUC diff.
1	0.930	0.935	0.935	
5	0.932	0.936	0.935	
10	0.929	0.934	0.935	. 10-3
20	0.930	0.933	0.933	< 10 ⁻³
30	0.926	0.930	0.931	
40	0.926	0.931	0.930	
50	0.918	0.915	0.927	0.008
60	0.884	0.870	0.910	0.026
70	0.756	0.702	0.854	0.098
80	0.438	0.356	0.741	0.304
90	N/A	0.040	0.302	N/A

WIC in HME data



Bias 1 - Loss of Reads

$$g_1$$
 A ref

$$x \downarrow a = p(a \text{ read that passes } g \downarrow 1 \text{ being unmapped})$$

= $p(r \downarrow 1 \text{ has } d+1 \text{ or more variants in the remaining sites})$

 $x \downarrow b = p(a \text{ read that passes } g \downarrow 2 \text{ being unmapped})$

 $=p(r\downarrow 2 \ has \ d+1 \ or \ more \ variants \ in \ the \ remaining \ sites)$

$$x \downarrow a = 1 - \sum_{i=0}^{n} \int d \left(\left(-1 \otimes_{i} \right) p \uparrow_{i} \right)$$

$$(1-p) \uparrow_{i} - 1 - i$$

$$x \downarrow_{b} = 1 - \sum_{i=0}^{n} \int d - 1 \left(\left(-1 \otimes_{i} \right) p \uparrow_{i} \right)$$

$$(1-p) \uparrow_{i} - 1 - i$$

,where d=maximum edit distance, l=read length, and p=frequency of variation

Bias 2 - Loss of variants